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ARTICLE INFO ABSTRACT

Article history: Orphan crops play an important role in global food and nutrition security, and may have the potential to contribute to
Received on: July 02, 2024 sustainable food systems under stress conditions. Despite their huge importance for present and future agriculture,
Accepted on: October 29, 2024 orphan crops have generally received little attention from the global scientific community. Due to this, they produce
Available Online: January 25, 2025 inferior yields in terms of both quantity and quality. Orphan crops are part of all food kinds including root and tuber

crops, legumes, cereals, and vegetables as major crops. Orphan crops can provide essential nutrients to worldwide
diets, help economic growth in the global poorest places, and strengthen the entire agri-food industry’s resistance
against both abiotic and biotic challenges. Producer’s plant landraces are obtained and exchanged through a
disorganized market system, and little scientific effort has been devoted to orphan crops. Breeding and investigation
may be accelerated by using speed breeding technique that reduces plant production times, helping to meet ever-
increasing needs. The present review highlights the ongoing efforts and future possibilities for accelerating the
breeding of orphan crops, as well as divergent genomic approaches for deploying speed breeding in low-resource
areas throughout the world.
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1. INTRODUCTION research and development [2,3]. Neglected crops provide food and
Increased population growth rates in poor and developing markets income for farmers in the poorest nations worldwide because they
negatively affect food access and availability for poor households are tailored to local conditions and serve as key mainstays in local
increasing the need to provide overall food and diet security. It is feeds [4].

an extremely high priority in the developing regions of the world,
where population growth is coupled with the increased intensity of
climate change [1]. However, deliberate initiatives include orphan
crops, which are plant varieties whose output and use are restricted
to a few locations or niche markets. Agricultural importance in
industrialized economies receives minimal attention in terms of

Orphan crops were particularly crucial for promoting economical,
sustainable, and diversified agricultural systems they consume little
water than other agricultural crops and may benefit soils via nitrogen
fixation and organic matter insertion. Orphan crops are defined as
crops that have either originated in a geographic location or those
that have become “indigenized” over many years (> 10 decades) of
cultivation as well as natural and farmer selection. Furthermore, most
orphan crops are robust and can withstand adverse environmental
*Corresponding Author circumstances including drought, cold, salinity, insects, and disease
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also the advantages are projected to outweigh those of most traditional
crops [9,10].

Despite the development, a fundamental bottleneck remains the
inability to generate the necessary crossings for hybridization, and
period required for successive selfing gives rise to homozygous
lineages. The current germplasm pool has the issue of nonsynchronous
flowering, which is a bottleneck despite the fact that most orphan crops
are still in the early phases of cultivation and have prolonged immature
phases (interfering with hybridization and the transmission of desirable
features). Some individuals are also vegetatively propagated. Speed
breeding techniques will aid in overcoming this barrier and allowing
contemporary breeding methods to be used. For instance, in a speed
breeding program, the quick generation of recombinant inbred lines
might permit rapid genomics-aided breeding [6,11]. Several reports
have recorded and examined orphan crops, including their origins,
production locations, specific characteristics, traditional and modern
applications, and breeding development [12,13].

2. TYPES OF ORPHAN CROPS

Orphan crops are also known as underutilized crops [14], lost crops
(NRC 1996, 2006, 2008), and neglected crops or crops for the future.
According to Crops for the Future (CFF 2019), the diverse names
given to these crops reflect the following characteristics: “neglected”
(by science and development), “orphan” (without champions or crop
experts), “minor” (relative to global crops), “promising” (for emerging
markets, or because of previously unrecognized value traits), “niche”
(of marginal importance in production systems and economies), and
“traditional” (used for centuries or even millennia). Orphan crops
belong to the major groups of crops, which include cereals, legumes,
and fruit as well as root crops (Table 1).

Cereals are excellent suppliers of nutrition for animals and humans
and are a great source of iron, potassium, magnesium, zinc, calcium,
and other nutrients [15]. Millets represent different types of millets
which include Barnyard millet (Echinochloa crusgalli), finger millet
(Eleusine coracana), foxtail millet (Setaria italica), kodo millet
(Paspalum scrobiculatum), little millet (Panicum sumatrense), pearl
millet (Pennisetum glaucum), and prosomillet (Panicum miliaceum)
as well as tef (Eragrostis tef) and fonio (Digitaria sp.). Pear]l millet,
one of the main varieties of millets, is primarily grown as a food crop
because of its extraordinary resistance to moisture shortage. Due to its
low glycemic index and gradual release of glucose into the bloodstream
resulting from its slow digestion and high fiber content, finger millet is
also a favorite food among diabetics [16]. Tef is regarded as a lifestyle
crop and has gained popularity recently because it does not contain
gluten, which is the cause of celiac disease.

Pseudocereals are a class of crops that, in contrast to grasses, have
two cotyledons instead of one, making them not members of the
grass family. [17]. However, the nutritional makeup of pseudocereals,
particularly in terms of the composition of carbohydrates,
demonstrates their strong resemblance to “true cereals”. Amaranths
(Amaranthus spp.), buckwheat (Fagopyrum esculentum), and
quinoa (Chenopodium quinoa) are the major representatives of this
category [18]. Pseudocereals, besides being gluten-free, have several
health advantages such as lowering oxidative stress, preventing
cardiovascular illnesses, preventing cancer, reducing diabetes,
reducing inflammation, and reducing hypertension [19].

Legume crops benefit soil because they fix atmospheric nitrogen and
transform it into ammonium [20]. While Bambara groundnut (Vigna
subterranean) and cowpea (Vigna unguiculata) are extensively cultivated
in Africa, horse gram (Macrotyloma uniflorum) is mainly cultivated in

Asia. Bambara groundnut seeds are regarded as a complete food since
they have sufficient amounts of fat (6.5%), carbohydrates (63%), and
protein (19%). In addition to being heat- and drought-tolerant, the crop
outperforms many other crops in subpar soil [21]. This characteristic
makes the crop regarded as an insurance crop since it yields consistently
even in the event that all other crops fail owing to severe moisture scarcity.

In the developing globe, there are a lot of native or significant
local veggies. Many of them have advantageous agronomic and/
or nutritional characteristics such as baobab (Adansonia digitate), a
multipurpose tree with iron-rich leaves and vitamin C-rich fruits, and
okra (Abelmoschus esculentus), which grows quickly and is nutritious
[15]. Sesame (Sesamum indicum L), one of the oilseeds, is grown on
more than 10 million hectares of land each year, mostly in Tanzania,
India, Sudan, and Myanmar [22]. Other oilseeds that are somewhat
significant in developing nations include noug (Guizotia abyssinica),
castor bean (Ricinus communis), and linseed (Linum usitatissimum).

A significant portion of the population in developing countries is fed by
root crops such as yam (Dioscorea sp.), sweet potato (Ipomoea batatas),
and cassava (Manihot esculenta) [23,24]. Cassava is tolerant to drought
and performs better than other crops on soils with poor nutrients [25].
Whereas sweet potatoes are grown all throughout the world, yams are
only grown in Africa. It is worthwhile to mention the plant called enset
(Ensete ventricosum), which is also known as “false banana” because it
resembles the domesticated banana plant [26]. Ensete is a staple food
for over 20 million people in the densely populated regions of Ethiopia.
In contrast to bananas, where the fruit is eaten, in enset the underground
corm and pseudo-stem are edible [27]. Ensete is an extremely drought-
tolerant crop that adapts to different soil types.

In underdeveloped countries, banana and plantain (Musa spp.) are
significant fruit crops, despite the scarcity of genetic resources and
research [28]. It is often considered to be a vegetable rather than a fruit
since the plantain is cooked like a vegetable. Bananas, particularly the
orange-pulped kind with high carotenoid and iron content, can help
lower vitamin A deficiency and iron deficiency anemia [29]. Plantains
and bananas are regarded as healthful foods because they are high in
vital elements for human consumption.

3. SIGNIFICANCE OF ORPHAN CROPS

3.1. Tolerance to Biotic Stress

It has been possible to successfully introduce resistance genes into
important crops by using other orphan crops as donors. Coming to
the Solanaceae family, resistance genes to wilt of eggplant (Fusarium
oxysporium f. sp. melongenae) [30,31] and has been found in the
Solanum aethiopicum (African eggplant). Even some of the orphan
crops rootstocks were also used for improvising the Solanaceae
family crops such as S. aethiopicum and Solanum torvum are
selected rootstocks to enhance disease resistance in (brinjal) Solanum
melongena [32,33] and (tomato) Solanum Iycopersicum [34].
Fusarium spp. resistance genes are found when grafting of Cucumis
melo (watermelon) onto (bottle guard) Lagenaria siceraria [51,52].

3.2. Tolerance to Abiotic Stress

At present the major problem is drought and heat waves. Some of
the examples are briefed below. Tef is a waterlogging-tolerant crop
[35]. Noug is an example of an abiotic stress-tolerant crop [45]. Enset
and Yam were examples of drought resistance. Pearl millet is widely
grown and it is resistant to moisture deficit [53]. Lathyrus sativus
(grasspea) is highly resistance to drought [6]. Vigna unguiculata is a
drought and heat-tolerance crop [54].



Table 1. Orphan food crops and their geographical significance.

Common name
Tef
African rice

Millets

Buck wheat
Quinoa

Pigeon pea

Cow pea
Bambora ground
nut

Horse gram

Lentils

Grass pea

Chickpea

Okra

Moringa
Baobab

Noug

Castor bean
Sesame

Linseed

Taro cocoyam

Cassaava

Enset

Yam

Sweet potato

Plantain

Banana
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Scientific name

Eragrostis tef
Oryza glaberrina

(Panicum miliaceum), pearl millet
(Pennisetum glaucum), finger millet
(Eleusine coracana), kodo millet
(Paspalum setaceum), foxtail millet
(Setaria italic)

Fagopyrum esculentum
Chenopodium quinoa
Cajans cajan
Vigna unguiculata
Vigna subterrance
Macrotyloma uniflorum

Lens culinaris

Lathrus sativus

Cicer arietinum

Abelmoschus esculentus

Moringa oleifria

Adonsonia digitale

Guizotia abyssinica

Ricinus communis

Sesamum indicum

Linnum usitatissimum

Colocasia esculentum

Manihot esculentum

Enset ventricosum

Dioscorea spp

Impomea batatas

Musa. spp

Musa. spp

Global
area Major cultivating countries
(mha)
CEREALS
3.1 Eritrea, Ethiopia
Burkina Faso, Nigeria, Sierra Leone,
Liberia
322 Niger, Indian, Nigeria, Mali, Sudan,
Burkina Faso, Chad, China, Senegal,
Ethiopia, Pakistan
PSEUDO CEREALS
4.18 Poland, Russia, China, Kazakhstan,
Ukraine,
0.19 Peru, Ecuador, Bolivia
LEGUMES
5.49 Tanzania, India, Myanmar, Kenya,
Malawi, Haiti
12.25 Burkina Faso, Niger, Nigeria, Sudan,
Mozambique
0.26 Cameroon, DR Congo, Niger, Togo,
Burkina Faso, Mali
Myanmar, India, Bangladesh, Bhutan,
Sri Lanka
5.46 USA, Canada, India, Nepal, Turkey,
Australia, Syria, Bangladesh, Ethiopia,
Iran
1.5 Nepal, India, Bangladesh, Ethiopia,
Pakisthan
12.65 Pakisthan, Australia, India, Myanmar,

2.41

1.44
10.6

3.02

1.83

26.1

0.3
8.38

12.25

5.43

Iran, Turkey, Ethiopia, Russia
VEGETABLES
Niger, Nigeria, India, Mali, Sudan, Céte
d’Ivoire, Cameroon
India
India, Madagascar
OIL SEEDS
India, Ethiopia

Mozambique, China, Brazil, India
Tanzania, India, Sudan, Myanmar,
Ethiopia, South Sudan, Nigeria
Canada, Russia, Kazakhstan, USA,
India, China, Ukraine, Ethiopia

ROOT CROPS
China, Nigeria, Cote d’Ivoire, China,
Ghana, Madagascar, Rwanda
Cote d’Ivoire, Nigeria, Thailand, DR
Congo, Brazil, Uganda, Mozambique,
Ghana, Angola, Tanzania, Indonesia
Ethiopia
Cote d’Ivoire, Benin, Nigeria, Ghana,
Sudan, Togo
Tanzania, China, Nigeria, Angola,
Ethiopia, Uganda, Madagascar
FRUITS
Nigeria, Colombia, Cote d’Ivoire,
Ghana Cameroon, Uganda, Philippines,
Tanzania, DR Congo
Philippines, Tanzania, China, India,
Brazil, Ecuador, Rwanda, Uganda,
Burundi

Beneficial traits

Abiotic stress free of gluten

Resistance to abiotic and
biotic stress

Abiotic stress tolerance;
nutritious and healthy food

Nutritious

Healthy and nutritious

Nutritious and drought
tolerance

Drought tolerance and
nutritious

Healthy food and nutritious

Nutritious

Nutritious and eExtremely
drought tolerance

Nutritious

Tolerance to nutritious and
abiotic stress

Nutritious

Nutritious

Abiotic stress tolerance,
quality oil,
Healthy
Oxidatively stable oil

Healthy and nutritious

Healthy and nutritious

Drought tolerance

Drought tolerance

Drought tolerance

Rich in calcium and
riboflavin

Healthy and nutritious

Healthy and nutritious
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Figure 1. Improving the existing crops using neglected crops.

3.3. Alternate Names of Orphan Crops

Orphan crops are also called as “neglected crops” [55] or “underutilized
crops” [14] or “crops for the future” (Fig. 1). The following traits are
reflected in the given name to these crops: by science and development
(“neglected”), without leaders or agricultural specialists (“orphan”).
Compared to world crops (“minor”), due to developing markets or
previously unnoticed value characteristics (“promising”), of little
consequence to economies and manufacturing systems (“niche”), used
for hundreds, perhaps even generations (“traditional”) [15].

4. METHODS FOR IMPROVING ORPHAN CROP
RESISTANCE TO ABIOTIC STRESS

At present, there are so many technologies for analyzing genomes
that are accessible to the general public. These tools make it possible
to transfer and use genes (resources) to orphan crops (minor crops)
for commercial production from major crops [52]. Recent research
has shown that for many African crops, the actual yield that farmers
achieve falls significantly short of the potential output [56], implying
that increased crop yields are possible with the help of improved
varieties and smarter agricultural practices. Recent studies have
highlighted the tremendous potential of modern breeding and gene
sequencing approaches in the creation of crops that are resistant or
tolerant to abiotic stresses [57,58].

5. MODERN BREEDING METHODS AND GENOMIC
APPROACHES

5.1. Molecular Breeding Steps

In the initial stage of molecular breeding, molecular markers are
used to understand the genetic variation present in crop types and the
possible benefits supplied by their wild forms (Fig. 2). The 2™ way is
through the exchange of genetic material between different genotypes
and “Genetic engineering” is commonly used to describe this method.
This allows for the introduction of really unique features into a crop.
When genetic engineering is used to improve the effectiveness with
which native genes are throughout a gene pool [12].

5.2. Marker-Assisted Selection

Marker assisted selection (MAS) refers to the process of identifying
DNA sequences that are situated in close proximity to genes, molecular
markers can be utilized to selectively breed for characteristics that
are challenging to observe [13]. Single nucleotide polymorphisms

(SNPs) and microsatellites (or) simple sequence repeats are two
types of markers frequently used in plant breeding. Genome-wide
association studies (GWASs) [59] and genotyping-by-sequencing
(GBS) [60] are other SNP-based techniques that have developed
recently. The feasibility of GBS has recently been explored in a variety
of crops with varying sizes of genomes and breeding techniques [61].
Wheat varieties with high resistance to aluminum were successfully
identified using GWASs for the identification of abiotic stress
tolerance [62]. DArT diversity arrays technology [63], hybridization-
based molecular marker creation in orphan crops has proven to be an
effective strategy because it does not necessitate the availability of
sequence information. DArT-sequencing (DArT-seq) is a relatively
new technique that combines DArT with next generation sequencing
(NGS) [64]. It allows for high throughput genotyping and speeds
up the process of discovering SNPs in many neglected crops. Many
orphan crops that are able to withstand extreme weather conditions are
now being characterized using DArT-seq. This includes the Eleusine
coracana (Finger millet) [65], Kerstingiella geocarpa (Kersting’s
groundnut) [66], L. sativus (grass pea) [67], and Vigna subterranean
(Bambara groundnut) [68].

5.3. Marker-Assisted Genetic Mapping

The concept of “quantitative traits” has proven challenging to
comprehend and control in traditional crop breeding programmes.
Quantitative trait locus (QTL) defines the chromosomal areas of
genes that regulate quantitative characteristics [12]. Goff ez al. [69]
predicted that roughly 2,000 cereal QTLs had been mapped. For MAS
in crop development, undisclosed markers associated with QTL have
been utilized in some cases, the significant degree of uncertainty in
mapping preferred sites of minor effects might restrict the value of
such markers. “Candidate genes” allow for the considerably more
exact localization of ideal genetic mutations [12]. Multiple studies
have reported the identification of plausible candidate genes that
co-locate with QTLs for various characteristics, encompassing
quantitative disease resistance in Triticum aestivum (Wheat) [70],
Solanum tuberosum (potato) [71], Phaseolus (bean) [72], and Oriza
sativa (rice) [73].

5.3.1. Hybridization

It is a process of mating or crossing two plants or lines of closely
related plant species together to increase genetic diversity for improve
desirable characteristics. NERICA is a popular new variety of Rice
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Figure 2. Neglected crops and respective wild forms.

in Africa, which developed through interspecific crossing between
Oryza glaberrima Steudel (African rice) and O. sativa L. (Asian rice).
NERICA inherits the best qualities of its parents such as low soil
fertility, early maturing and drought-tolerant from O. glaberrima, and
high protein content and seed yield from O. sativa [37]. Because of the
carly maturing character of O. glaberrima, it is able to survive the final
drought that often strikes after the flowering stage. Several nations in
Africa are now cultivating NERICA [73].

5.3.2. Genome editing

Genome editing is used to modify an organism genotypically
and phenotypically [74] and uses mutations (both induced and
natural) to enhance crops. Site-specific nucleases (SSNs) direct
gene editing, are enables accurate mutagenesis of a target genome
without permanently introducing DNA to the target organism.
Various types of SSNs, such as transcription activator-like effector
nucleases, Clustered regularly interspaced short palindromic repeats/
CRISPR-associated proteins (CRISPR/Cas), zinc finger nucleases
and meganucleases, have the ability to cause targeted double-strand
breaks in DNA [75-77]. There are several genome editing tools are
there, and out of them, the most common tool is CRISPR/Cas 9 [78].

Genome editing techniques, such as CRISPR-Cas9, hold promise
for speeding up the domestication process of orphan plants by
selectively modifying their undesirable characteristics [79,80] in both
polyploids [80,81], and diploids [82]. Genome editing with CRISPR/
Cas9 was effectively performed by a researcher in Physalis pruinose
(groundcherry), a wild relative of Lycopersicon esculentum (tomato)
[52]. Musa acuminata (Banana) is an understudied polyploid that
serves as a model for other neglected/orphan crops because of its
complicated genome and successful application of CRISPR-Cas9-
based genome editing [83].

5.3.2.1. Omics Tools (Proteomics, Transcriptomics, and Genomics)

Thirty orphan crops, spanning thirteen families, have been subjected
to genome sequencing in the last 5 years [52]. A minority of the
genomes (8 out of 30) that were sequenced were found to be
polyploids, suggesting a potential bias towards simpler genomes.
This observation may be influenced by the predominant use of 2™-
generation sequencing platforms. In spite of the fact that a few of these
draft-genomes will be suitable for application for molecular breeding,
to enhance complicated genomes in the same way as tef was a, 3%
-generation sequencing technology will be required [84]. In order to
answer specific biological issues, other orphan crop transcriptomes
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Table 2. Advancing in orphan crops by modern breeding and genomics methods.

Methods Crops

Marked assisted GBS

Chickpea (Cicer arietinum), Cassava (Manihot esculenta), finger millet (Eluesine coracana),

References

[105-112]

cowpea(Vigna unguiculata), pearlmillet(Pennisetum glaucum)

Genome editingCRISPR/Cas9
Speed breeding
Transcriptome £quence Chickpea (Cicer arietinum)

Genome sequence

Ground cherry (Physalis pruinose), Cassava (Manihotesculenta)

Enset (Ensete ventricosum), Pegion pea (Cajanus cajan), Cowpea (Cicer arietinum), Pearl

[82,113,114,115,116]

Chickpea (Cicer arietinum), cassava (Manihot esculenta) , finger millet(Eluesine coracana) [101]

[117,118]
[117,119,126]

millet(Pennisetum glaucum), chick pea (Cicer arietinum), 101African crops

Proteome sequence Pearl millet (Pennisetum glaucum), Chickpea (Cicerarietinum) [127-129]
Eco tilling osmics Chickpea (Cicer arietinum) [130]
RNASeq Finger millet (Eluesine coracana), Chickpea (Cicerarietinum) [119,131,132]
GWAS Cassava (Manihot esculenta), finger millet (Eluesine coracana),chick pea (Cicer arietinum), [11,133-135]

foxtail millet (Setaria italica)

have been created, and RNA sequencing has emerged as the method of
interest [85]. As an illustration, [86] identified 2,416 genes that were
altered when profiling the response to salt stress in C. guinoa (quinoa).
A transcriptional study was performed on Corchorus olitorius (Jute-
mallow) to locate genes involved with drought stress response [87].
Prior to NGS, microarrays were the preferred method for analyzing
transcriptomes, even being used in some orphan crops like Solanum
nigrum [88], Fagopyrum esculentum [89], Sinapis arvensis [90],
Eragrostis tef (Tef) [91], and Lupinus albus [92] to identify expression
profiles associated with resistance to abiotic stress. Proteomic
methods have also been used to investigate the mechanisms behind
rice’s drought tolerance [93] and in cereals (like drought and salinity
tolerance) [94].

5.3.3. Transgenic

The second method of “molecular breeding” for plant characteristics,
direct gene transfer, makes use of recombinant DNA technology
to introduce (one (or) several) genes into the plant genome. The
potential for extending the uses of this technique to neglected
(orphan) crop improvement may be substantial. Despite the fact, that
most transgenic research and implementations to date have centered
on some major crops [95]. Public research centers in atleast 10
poor nations are now conducting field tests of propitious transgenic
lines for about 20 various crops including Piper nigrum (Pepper),
Ipomoea batatas (Sweet potato), and (Cucurbita) squash [96]. These
lines are genetically modified and exhibit desirable characteristics,
such as resistance to viruses and pests. Instead of using promoters
from bacteria or other organisms, as is done in transgenesis, plant-
specific promoters are employed to drive the gene of interest in
cisgenesis [97].

5.3.4. High-throughput methods

Eco targeting induced local lesions in genomes (TILLING) from wild
species and TILLING from induced mutagenized populations are
two high-throughput approaches that have been used to find alleles in
orphan crops [15]. Eco TILLING and TILLING have both been used
for the betterment of native crops like Eragrostis tef (Tef) [98,99].

5.3.5. Speed breeding

When applied to orphan or neglected crop species, speed breeding
methods may be used to increase the extent of variation in breeding

individuals and hasten the accomplishment of breeding objectives by
synchronizing the blooming of wild relatives and cultivated species.
Optimization of the plant growth environment including temperature,
plant density, and photoperiod, genetic engineering to the target
blooming pathway, using plant growth regulators, grafting young
plants onto mature rootstocks, and harvesting premature seed are all
viable methods for rapid cycling [6,100,101]. Speed breeding protocols
have been improved for legumes (Cicer arietinum) (Chickpea) [102],
Arachis hypogaea (Groundnut) [6] and cereals O. sativa (Rice) [103],
Triticum aestivum (Wheat) [104].

5.3.6. Speed breeding centres among various countries

Potential collaborators for speed breeding centers that are well-
positioned may include: Taiwan (The World Vegetable Center), Ghana
(The West Africa Center for Crop Improvement), Malaysia (Crops
for the Future), UAE (The Global Pulse Confederation), worldwide
(CGIAR Center and Research Programs), Kenya (The African Orphan
Crops Consortium). Researchers at IITA (International Institute of
Tropical Agriculture), Ibadan, Nigeria: ICRISAT (International Crops
Research Institute for Semi-Arid Tropics), Patancheru, Telangana;
CGIAR centers and International Center for Agricultural Research in
the Dry Areas, Beirut, Lebanon, have voiced an interest in building
speed breeding centers to quicken the breeding process for the crops
they are required to grow [101].

6. CHALLENGES

One of the most challenging aspects of adopting speed breeding is
ensuring optimal growing conditions, including protection from pests
and diseases. In addition to plant population assessments, drones
can also be used for various agricultural applications, such as crop
monitoring, irrigation management, and soil analysis. By collecting
data from the above, drones provide a comprehensive view of crop
health and growth patterns, allowing farmers to make informed
decisions about their crops [87,136]. Trait analysis using drones is
now affordable and practical [87,137]. Combining speed breeding
with automated phenotypic screening enables fast evaluation of plants
in orphan crops, allowing researchers to develop new cultivars with
multiple desirable traits. The primary focus would be to provide
training to breeders on the utilization of sophisticated breeding
techniques, similar to the ongoing efforts of the African Plant Breeding
Academy [52].
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Traditional procedures, such as line selection from landraces, are used
to better orphan crops. Introgressions using interspecific or intraspecific
crossings are used in some orphan crop breeding initiatives. Through
collaborations between institutions in rich and developing nations,
innovative breeding technologies have recently been introduced for
a number of orphan crops Table 2. Marker-based research, such as
GWAS and GBS, are examples of sophisticated approaches (GWAS).
EcoTILLING from wild species and TILLING from induced
mutagenized populations are two high-throughput approaches that
have been used to find alleles in orphan crops. The major goal of the
AOCC is genome sequencing of one hundred and one African edible
plants and improve the nutritional status of Africans by means of
molecular breeding technologies and education [138]. Moreover, the
partnership is committed to ensuring that its work is aligned with the
United Nations Sustainable Development Goals, particularly those
related to zero hunger, responsible consumption and production, and
climate action. Transcriptomics and proteomics, among other omics
methods, have been employed to explain gene transcription patterns
of several underutilized crops. On Manihot esculenta (cassava) and,
more recently, on groundcherry, genome alteration techniques such
as CRISPR/Cas9 have been used [113,114]. Orphan crops such as
cassava, millet, and teff can have their unwanted traits altered rapidly
with the help of clustered regularly interspaced short palindromic
technology [139].

7. CONCLUSION

Food security, especially in underdeveloped areas, and genetic
diversity depend critically on minor or neglected crops. Despite their
relevance, few researchers have paid much attention to these plants.
As a result, major agricultural changes are needed to raise agricultural
production for understudied crops to meet the developing world’s
increasing population density. These collaborations among important
stakeholders are required to address the issues, particularly in light
of changing climate. Orphan crop varieties can be developed, tested,
and released to the market much sooner if speed breeding is used in
conjunction with different breeding methods and low-cost automated
phenotypic and genotypic. Field testing, as well as farmer participation
in the examination and assessment of elite breeding lines, will be
critical in hastening the creation and spread of better cultivars.
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