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ABSTRACT 

Orphan crops play an important role in global food and nutrition security, and may have the potential to contribute to 
sustainable food systems under stress conditions. Despite their huge importance for present and future agriculture, 
orphan crops have generally received little attention from the global scientific community. Due to this, they produce 
inferior yields in terms of both quantity and quality. Orphan  crops are part of all food kinds including root and tuber 
crops, legumes, cereals, and vegetables as major crops. Orphan crops can provide essential nutrients to worldwide 
diets, help economic growth in the global poorest places, and strengthen the entire agri-food industry’s resistance 
against both abiotic and biotic challenges. Producer’s plant landraces are obtained and exchanged through a 
disorganized market system, and little scientific effort has been devoted to orphan crops. Breeding and investigation 
may be accelerated by using speed breeding technique that reduces plant production times, helping to meet ever-
increasing needs. The present review highlights the ongoing efforts and future possibilities for accelerating the 
breeding of orphan crops, as well as divergent genomic approaches for deploying speed breeding in low-resource 
areas throughout the world.

1. INTRODUCTION 
Increased population growth rates in poor and developing markets 
negatively affect food access and availability for poor households 
increasing the need to provide overall food and diet security. It is 
an extremely high priority in the developing regions of the world, 
where population growth is coupled with the increased intensity of 
climate change [1]. However, deliberate initiatives include orphan 
crops, which are plant varieties whose output and use are restricted 
to a few locations or niche markets. Agricultural importance in 
industrialized economies receives minimal attention in terms of 

research and development [2,3]. Neglected crops provide food and 
income for farmers in the poorest nations worldwide because they 
are tailored to local conditions and serve as key mainstays in local 
feeds [4].

Orphan crops were particularly crucial for promoting economical, 
sustainable, and diversified agricultural systems they consume little 
water than other agricultural crops and may benefit soils via nitrogen 
fixation and organic matter insertion. Orphan crops are defined as 
crops that have either originated in a geographic location or those 
that have become “indigenized” over many years (> 10 decades) of 
cultivation as well as natural and farmer selection. Furthermore, most 
orphan crops are robust and can withstand adverse environmental 
circumstances including drought, cold, salinity, insects, and disease 
[5]. Orphan crop species can benefit from speed breeding techniques 
by increasing genetic diversity in breeding populations and shortening 
the time it takes to reach breeding goals by synchronizing the flowering 
of farmed and wild populations of the species [6–8]. Orphan crops 
are only now beginning to profit from new breeding techniques, and 
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also the advantages are projected to outweigh those of most traditional 
crops [9,10]. 

Despite the development, a fundamental bottleneck remains the 
inability to generate the necessary crossings for hybridization, and 
period required for successive selfing gives rise to homozygous 
lineages. The current germplasm pool has the issue of nonsynchronous 
flowering, which is a bottleneck despite the fact that most orphan crops 
are still in the early phases of cultivation and have prolonged immature 
phases (interfering with hybridization and the transmission of desirable 
features). Some individuals are also vegetatively propagated. Speed 
breeding techniques will aid in overcoming this barrier and allowing 
contemporary breeding methods to be used. For instance, in a speed 
breeding program, the quick generation of recombinant inbred lines 
might permit rapid genomics-aided breeding [6,11]. Several reports 
have recorded and examined orphan crops, including their origins, 
production locations, specific characteristics, traditional and modern 
applications, and breeding development [12,13]. 

2. TYPES OF ORPHAN CROPS
Orphan crops are also known as underutilized crops [14], lost crops 
(NRC 1996, 2006, 2008), and neglected crops or crops for the future. 
According to Crops for the Future (CFF 2019), the diverse names 
given to these crops reflect the following characteristics: “neglected” 
(by science and development), “orphan” (without champions or crop 
experts), “minor” (relative to global crops), “promising” (for emerging 
markets, or because of previously unrecognized value traits), “niche” 
(of marginal importance in production systems and economies), and 
“traditional” (used for centuries or even millennia). Orphan crops 
belong to the major groups of crops, which include cereals, legumes, 
and fruit as well as root crops (Table 1).

Cereals are excellent suppliers of nutrition for animals and humans 
and are a great source of iron, potassium, magnesium, zinc, calcium, 
and other nutrients [15]. Millets represent different types of millets 
which include Barnyard millet (Echinochloa crusgalli), finger millet 
(Eleusine coracana), foxtail millet (Setaria italica), kodo millet 
(Paspalum scrobiculatum), little millet (Panicum sumatrense), pearl 
millet (Pennisetum glaucum), and prosomillet (Panicum miliaceum) 
as well as tef (Eragrostis tef) and fonio (Digitaria sp.). Pearl millet, 
one of the main varieties of millets, is primarily grown as a food crop 
because of its extraordinary resistance to moisture shortage. Due to its 
low glycemic index and gradual release of glucose into the bloodstream 
resulting from its slow digestion and high fiber content, finger millet is 
also a favorite food among diabetics [16]. Tef is regarded as a lifestyle 
crop and has gained popularity recently because it does not contain 
gluten, which is the cause of celiac disease.

Pseudocereals are a class of crops that, in contrast to grasses, have 
two cotyledons instead of one, making them not members of the 
grass family. [17]. However, the nutritional makeup of pseudocereals, 
particularly in terms of the composition of carbohydrates, 
demonstrates their strong resemblance to “true cereals”. Amaranths 
(Amaranthus spp.), buckwheat (Fagopyrum esculentum), and 
quinoa (Chenopodium quinoa) are the major representatives of this 
category [18]. Pseudocereals, besides being gluten-free, have several 
health advantages such as lowering oxidative stress, preventing 
cardiovascular illnesses, preventing cancer, reducing diabetes, 
reducing inflammation, and reducing hypertension [19].

Legume crops benefit soil because they fix atmospheric nitrogen and 
transform it into ammonium [20]. While Bambara groundnut (Vigna 
subterranean) and cowpea (Vigna unguiculata) are extensively cultivated 
in Africa, horse gram (Macrotyloma uniflorum) is mainly cultivated in 

Asia. Bambara groundnut seeds are regarded as a complete food since 
they have sufficient amounts of fat (6.5%), carbohydrates (63%), and 
protein (19%). In addition to being heat- and drought-tolerant, the crop 
outperforms many other crops in subpar soil [21]. This characteristic 
makes the crop regarded as an insurance crop since it yields consistently 
even in the event that all other crops fail owing to severe moisture scarcity.

In the developing globe, there are a lot of native or significant 
local veggies. Many of them have advantageous agronomic and/
or nutritional characteristics such as baobab (Adansonia digitate), a 
multipurpose tree with iron-rich leaves and vitamin C-rich fruits, and 
okra (Abelmoschus esculentus), which grows quickly and is nutritious 
[15]. Sesame (Sesamum indicum L), one of the oilseeds, is grown on 
more than 10 million hectares of land each year, mostly in Tanzania, 
India, Sudan, and Myanmar [22]. Other oilseeds that are somewhat 
significant in developing nations include noug (Guizotia abyssinica), 
castor bean (Ricinus communis), and linseed (Linum usitatissimum).

A significant portion of the population in developing countries is fed by 
root crops such as yam (Dioscorea sp.), sweet potato (Ipomoea batatas), 
and cassava (Manihot esculenta) [23,24]. Cassava is tolerant to drought 
and performs better than other crops on soils with poor nutrients [25]. 
Whereas sweet potatoes are grown all throughout the world, yams are 
only grown in Africa. It is worthwhile to mention the plant called enset 
(Ensete ventricosum), which is also known as “false banana” because it 
resembles the domesticated banana plant [26]. Ensete is a staple food 
for over 20 million people in the densely populated regions of Ethiopia. 
In contrast to bananas, where the fruit is eaten, in enset the underground 
corm and pseudo-stem are edible [27]. Ensete is an extremely drought-
tolerant crop that adapts to different soil types.

In underdeveloped countries, banana and plantain (Musa spp.) are 
significant fruit crops, despite the scarcity of genetic resources and 
research [28]. It is often considered to be a vegetable rather than a fruit 
since the plantain is cooked like a vegetable. Bananas, particularly the 
orange-pulped kind with high carotenoid and iron content, can help 
lower vitamin A deficiency and iron deficiency anemia [29]. Plantains 
and bananas are regarded as healthful foods because they are high in 
vital elements for human consumption.

3. SIGNIFICANCE OF ORPHAN CROPS

3.1. Tolerance to Biotic Stress
It has been possible to successfully introduce resistance genes into 
important crops by using other orphan crops as donors. Coming to 
the Solanaceae family, resistance genes to wilt of eggplant (Fusarium 
oxysporium f. sp. melongenae) [30,31] and has been found in the 
Solanum aethiopicum (African eggplant). Even some of the orphan 
crops rootstocks were also used for improvising the Solanaceae 
family crops such as S. aethiopicum and Solanum torvum are 
selected rootstocks to enhance disease resistance in (brinjal) Solanum 
melongena [32,33] and (tomato) Solanum lycopersicum [34]. 
Fusarium spp. resistance genes are found when grafting of Cucumis 
melo (watermelon) onto (bottle guard) Lagenaria siceraria [51,52].

3.2. Tolerance to Abiotic Stress
At present the major problem is drought and heat waves. Some of 
the examples are briefed below. Tef is a waterlogging-tolerant crop 
[35]. Noug is an example of an abiotic stress-tolerant crop [45]. Enset 
and Yam were examples of drought resistance. Pearl millet is widely 
grown and it is resistant to moisture deficit [53]. Lathyrus sativus 
(grasspea) is highly resistance to drought [6]. Vigna unguiculata is a 
drought and heat-tolerance crop [54].
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Table 1. Orphan food crops and their geographical significance.

Common name Scientific name
Global 

area 
(mha)

Major cultivating countries Beneficial traits References

CEREALS
Tef Eragrostis tef 3.1 Eritrea, Ethiopia Abiotic stress free of gluten [35,36]
African rice Oryza glaberrina Burkina Faso, Nigeria, Sierra Leone, 

Liberia
Resistance to abiotic and 

biotic stress
[37]

Millets (Panicum miliaceum), pearl millet 
(Pennisetum glaucum), finger millet 

(Eleusine coracana), kodo millet 
(Paspalum setaceum), foxtail millet 

(Setaria italic)

32.2 Niger, Indian, Nigeria, Mali, Sudan, 
Burkina Faso, Chad, China, Senegal, 

Ethiopia, Pakistan

Abiotic stress tolerance; 
nutritious and healthy food

[14,38–40]

PSEUDO CEREALS
Buck wheat Fagopyrum  esculentum 4.18 Poland, Russia, China, Kazakhstan, 

Ukraine,
Nutritious [38]

Quinoa Chenopodium quinoa 0.19 Peru, Ecuador, Bolivia Healthy and nutritious [38]
LEGUMES

Pigeon pea Cajans cajan 5.49 Tanzania, India, Myanmar, Kenya, 
Malawi, Haiti

[38,41]

Cow pea Vigna unguiculata 12.25 Burkina Faso, Niger, Nigeria, Sudan, 
Mozambique

Nutritious and  drought 
tolerance

[38,42]

Bambora ground 
nut

Vigna subterrance 0.26 Cameroon, DR Congo, Niger, Togo, 
Burkina Faso, Mali

Drought tolerance and  
nutritious

[38,42]

Horse gram Macrotyloma uniflorum  Myanmar, India, Bangladesh, Bhutan, 
Sri Lanka

Healthy food and nutritious [43]

Lentils Lens culinaris 5.46 USA, Canada, India, Nepal, Turkey, 
Australia, Syria, Bangladesh, Ethiopia,  

Iran

Nutritious [38]

Grass pea Lathrus sativus 1.5 Nepal, India,  Bangladesh, Ethiopia,     
Pakisthan

Nutritious and eExtremely 
drought tolerance

[43,44]

Chickpea Cicer arietinum 12.65 Pakisthan, Australia, India, Myanmar, 
Iran, Turkey, Ethiopia, Russia

Nutritious [38]

VEGETABLES
Okra Abelmoschus esculentus 2.41 Niger, Nigeria, India, Mali, Sudan, Côte 

d’Ivoire, Cameroon
Tolerance to nutritious and 

abiotic stress
[38]

Moringa Moringa oleifria India Nutritious [42]
Baobab Adonsonia digitale India, Madagascar Nutritious [42]

OIL SEEDS
Noug Guizotia abyssinica India, Ethiopia Abiotic stress tolerance, 

quality oil,
[45]

Castor bean Ricinus communis 1.44 Mozambique, China,  Brazil, India Healthy [38]
Sesame Sesamum indicum 10.6 Tanzania, India, Sudan, Myanmar, 

Ethiopia, South Sudan, Nigeria
Oxidatively  stable oil [14,38]

Linseed Linnum usitatissimum 3.02 Canada, Russia, Kazakhstan, USA,
India, China, Ukraine, Ethiopia

Healthy and nutritious [38]

ROOT CROPS
Taro cocoyam Colocasia esculentum 1.83 China, Nigeria, Côte d’Ivoire, China, 

Ghana, Madagascar, Rwanda
Healthy and nutritious [38,46]

Cassaava Manihot esculentum 26.1 Côte d’Ivoire, Nigeria, Thailand, DR 
Congo, Brazil, Uganda, Mozambique, 
Ghana, Angola, Tanzania, Indonesia

Drought tolerance [38,47]

Enset Enset ventricosum 0.3 Ethiopia Drought tolerance [48,49]
Yam Dioscorea spp 8.38 Côte d’Ivoire, Benin, Nigeria, Ghana, 

Sudan, Togo
Drought tolerance [38,39]

Sweet potato Impomea batatas 12.25 Tanzania, China, Nigeria, Angola, 
Ethiopia, Uganda, Madagascar

Rich in calcium and 
riboflavin

[38,14]

FRUITS
Plantain Musa. spp 5.43 Nigeria, Colombia, Côte d’Ivoire, 

Ghana Cameroon, Uganda, Philippines, 
Tanzania, DR Congo

Healthy and nutritious [38,50]

Banana Musa. spp 5.81 Philippines, Tanzania, China, India, 
Brazil, Ecuador, Rwanda, Uganda, 

Burundi

Healthy and nutritious [38,50]
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3.3. Alternate Names of Orphan Crops
Orphan crops are also called as “neglected crops” [55] or “underutilized 
crops” [14] or “crops for the future” (Fig. 1). The following traits are 
reflected in the given name to these crops: by science and development 
(“neglected”), without leaders or agricultural specialists (“orphan”). 
Compared to world crops (“minor”), due to developing markets or 
previously unnoticed value characteristics (“promising”), of little 
consequence to economies and manufacturing systems (“niche”), used 
for hundreds, perhaps even generations (“traditional”) [15].

4. METHODS FOR IMPROVING ORPHAN CROP 
RESISTANCE TO ABIOTIC STRESS
At present, there are so many technologies for analyzing genomes 
that are accessible to the general public. These tools make it possible 
to transfer and use genes (resources) to orphan crops (minor crops) 
for commercial production from major crops [52]. Recent research 
has shown that for many African crops, the actual yield that farmers 
achieve falls significantly short of the potential output [56], implying 
that increased crop yields are possible with the help of improved 
varieties and smarter agricultural practices. Recent studies have 
highlighted the tremendous potential of modern breeding and gene 
sequencing approaches in the creation of crops that are resistant or 
tolerant to abiotic stresses [57,58].

5. MODERN BREEDING METHODS AND GENOMIC 
APPROACHES 

5.1. Molecular Breeding Steps
In the initial stage of molecular breeding, molecular markers are 
used to understand the genetic variation present in crop types and the 
possible benefits supplied by their wild forms (Fig. 2). The 2nd way is 
through the exchange of genetic material between different genotypes 
and “Genetic engineering” is commonly used to describe this method. 
This allows for the introduction of really unique features into a crop. 
When genetic engineering is used to improve the effectiveness with 
which native genes are throughout a gene pool [12].

5.2. Marker-Assisted Selection
Marker assisted selection (MAS) refers to the process of identifying 
DNA sequences that are situated in close proximity  to genes, molecular 
markers can be utilized to selectively breed for characteristics that 
are challenging to observe [13]. Single nucleotide polymorphisms 

(SNPs) and microsatellites (or) simple sequence repeats are two 
types of markers frequently used in plant breeding. Genome-wide 
association studies (GWASs) [59] and genotyping-by-sequencing 
(GBS) [60] are other SNP-based techniques that have developed 
recently. The feasibility of GBS has recently been explored in a variety 
of crops with varying sizes of genomes and breeding techniques [61]. 
Wheat varieties with high resistance to aluminum were successfully 
identified using GWASs for the identification of abiotic stress 
tolerance [62]. DArT diversity arrays technology [63], hybridization-
based molecular marker creation in orphan crops has proven to be an 
effective strategy because it does not necessitate the availability of 
sequence information. DArT-sequencing (DArT-seq) is a relatively 
new technique that combines DArT with next generation sequencing 
(NGS) [64]. It allows for high throughput genotyping and speeds 
up the process of discovering SNPs in many neglected crops. Many 
orphan crops that are able to withstand extreme weather conditions are 
now being characterized using DArT-seq. This includes the Eleusine 
coracana (Finger millet) [65], Kerstingiella geocarpa (Kersting’s 
groundnut) [66], L. sativus (grass pea) [67], and Vigna subterranean 
(Bambara groundnut) [68].

5.3. Marker-Assisted Genetic Mapping
The concept of “quantitative traits” has proven challenging to 
comprehend and control in traditional crop breeding programmes. 
Quantitative trait locus (QTL) defines the chromosomal areas of 
genes that regulate quantitative characteristics [12]. Goff et al. [69] 
predicted that roughly 2,000 cereal QTLs had been mapped. For MAS 
in crop development, undisclosed markers associated with QTL have 
been utilized in some cases, the significant degree of uncertainty in 
mapping preferred sites of minor effects might restrict the value of 
such markers. “Candidate genes” allow for the considerably more 
exact localization of ideal genetic mutations [12]. Multiple studies 
have reported the identification of plausible candidate genes that 
co-locate with QTLs for various characteristics, encompassing 
quantitative disease resistance in Triticum aestivum (Wheat) [70], 
Solanum tuberosum (potato) [71], Phaseolus (bean) [72], and Oriza 
sativa (rice) [73].

5.3.1. Hybridization
It is a process of mating or crossing two plants or lines of closely 
related plant species together to increase genetic diversity for improve 
desirable characteristics. NERICA is a popular new variety of Rice 

Figure 1. Improving the existing crops using neglected crops.
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in Africa, which developed through interspecific crossing between 
Oryza glaberrima Steudel (African rice) and O. sativa L. (Asian rice). 
NERICA inherits the best qualities of its parents such as low soil 
fertility, early maturing and drought-tolerant from O. glaberrima, and 
high protein content and seed yield from O. sativa [37]. Because of the 
early maturing character of O. glaberrima, it is able to survive the final 
drought that often strikes after the flowering stage. Several nations in 
Africa are now cultivating NERICA [73].

5.3.2. Genome editing
Genome editing is used to modify an organism genotypically 
and phenotypically [74] and uses mutations (both induced and 
natural) to enhance crops. Site-specific nucleases (SSNs) direct 
gene editing, are enables accurate mutagenesis of a target genome 
without permanently introducing DNA to the target organism. 
Various types of SSNs, such as transcription activator-like effector 
nucleases, Clustered regularly interspaced short palindromic repeats/
CRISPR-associated proteins (CRISPR/Cas), zinc finger nucleases 
and meganucleases, have the ability to cause targeted double-strand 
breaks in DNA [75–77]. There are several genome editing tools are 
there, and out of them, the most common tool is CRISPR/Cas 9 [78]. 

Genome editing techniques, such as CRISPR-Cas9, hold promise 
for speeding up the domestication process of orphan plants by 
selectively modifying their undesirable characteristics [79,80] in both 
polyploids [80,81], and diploids [82]. Genome editing with CRISPR/
Cas9 was effectively performed by a researcher in Physalis pruinose 
(groundcherry), a wild relative of Lycopersicon esculentum (tomato) 
[52]. Musa acuminata (Banana) is an understudied polyploid that 
serves as a model for other neglected/orphan crops because of its 
complicated genome and successful application of CRISPR-Cas9-
based genome editing [83].

5.3.2.1. Omics Tools (Proteomics, Transcriptomics, and Genomics)
Thirty orphan crops, spanning thirteen families, have been subjected 
to genome sequencing in the last 5 years [52]. A minority of the 
genomes (8 out of 30) that were sequenced were found to be 
polyploids, suggesting a potential bias towards simpler genomes. 
This observation may be influenced by the predominant use of 2nd-
generation sequencing platforms. In spite of the fact that a few of these 
draft-genomes will be suitable for application for molecular breeding, 
to enhance complicated genomes in the same way as tef was a, 3rd 
-generation sequencing technology will be required [84]. In order to 
answer specific biological issues, other orphan crop transcriptomes 

Figure 2. Neglected crops and respective wild forms.
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have been created, and RNA sequencing has emerged as the method of 
interest [85]. As an illustration, [86] identified 2,416 genes that were 
altered when profiling the response to salt stress in C. quinoa (quinoa). 
A transcriptional study was performed on Corchorus olitorius (Jute-
mallow) to locate genes involved with drought stress response [87]. 
Prior to NGS, microarrays were the preferred method for analyzing 
transcriptomes, even being used in some orphan crops like Solanum 
nigrum [88], Fagopyrum esculentum [89], Sinapis arvensis [90], 
Eragrostis tef (Tef) [91], and Lupinus albus [92] to identify expression 
profiles associated with resistance to abiotic stress. Proteomic 
methods have also been used to investigate the mechanisms behind 
rice’s drought tolerance [93] and in cereals (like drought and salinity 
tolerance) [94].

5.3.3. Transgenic
The second method of “molecular breeding” for plant characteristics, 
direct gene transfer, makes use of recombinant DNA technology 
to introduce (one (or) several) genes into the plant genome. The 
potential for extending the uses of this technique to neglected 
(orphan) crop improvement may be substantial. Despite the fact, that 
most transgenic research and implementations to date have centered 
on some major crops [95]. Public research centers in atleast 10 
poor nations are now conducting field tests of propitious transgenic 
lines for about 20 various crops including Piper nigrum (Pepper), 
Ipomoea batatas (Sweet potato), and (Cucurbita) squash [96]. These 
lines are genetically modified and exhibit desirable characteristics, 
such as resistance to viruses and pests. Instead of using promoters 
from bacteria or other organisms, as is done in transgenesis, plant-
specific promoters are employed to drive the gene of interest in 
cisgenesis [97].

5.3.4. High-throughput methods
Eco targeting induced local lesions in genomes (TILLING) from wild 
species and TILLING from induced mutagenized populations are 
two high-throughput approaches that have been used to find alleles in 
orphan crops [15]. Eco TILLING and TILLING have both been used 
for the betterment of native crops like Eragrostis tef (Tef) [98,99].

5.3.5. Speed breeding
When applied to orphan or neglected crop species, speed breeding 
methods may be used to increase the extent of variation in breeding 

individuals and hasten the accomplishment of breeding objectives by 
synchronizing the blooming of wild relatives and cultivated species. 
Optimization of the plant growth environment including temperature, 
plant density, and photoperiod, genetic engineering to the target 
blooming pathway, using plant growth regulators, grafting young 
plants onto mature rootstocks, and harvesting premature seed are all 
viable methods for rapid cycling [6,100,101]. Speed breeding protocols 
have been improved for legumes (Cicer arietinum) (Chickpea) [102], 
Arachis hypogaea (Groundnut) [6] and cereals O. sativa (Rice) [103], 
Triticum aestivum (Wheat)   [104].

5.3.6. Speed breeding centres among various countries
Potential collaborators for speed breeding centers that are well-
positioned may include: Taiwan (The World Vegetable Center), Ghana 
(The West Africa Center for Crop Improvement), Malaysia (Crops 
for the Future), UAE (The Global Pulse Confederation), worldwide 
(CGIAR Center and Research Programs), Kenya (The African Orphan 
Crops Consortium). Researchers at IITA (International Institute of 
Tropical Agriculture), Ibadan, Nigeria: ICRISAT (International Crops 
Research Institute for Semi-Arid Tropics), Patancheru, Telangana; 
CGIAR centers and International Center for Agricultural Research in 
the Dry Areas, Beirut, Lebanon, have voiced an interest in building 
speed breeding centers to quicken the breeding process for the crops 
they are required to grow [101].

6. CHALLENGES
One of the most challenging aspects of adopting speed breeding is 
ensuring optimal growing conditions, including protection from pests 
and diseases. In addition to plant population assessments, drones 
can also be used for various agricultural applications, such as crop 
monitoring, irrigation management, and soil analysis. By collecting 
data from the above, drones provide a comprehensive view of crop 
health and growth patterns, allowing farmers to make informed 
decisions about their crops [87,136]. Trait analysis using drones is 
now affordable and practical [87,137]. Combining speed breeding 
with automated phenotypic screening enables fast evaluation of plants 
in orphan crops, allowing researchers to develop new cultivars with 
multiple desirable traits. The primary focus would be to provide 
training to breeders on the utilization of sophisticated breeding 
techniques, similar to the ongoing efforts of the African Plant Breeding 
Academy [52].

Table 2. Advancing in orphan crops by modern breeding and genomics methods.

Methods Crops References

Marked assisted GBS Chickpea (Cicer arietinum), Cassava (Manihot esculenta), finger millet (Eluesine coracana), 
cowpea(Vigna unguiculata), pearl millet(Pennisetum glaucum)

[105–112]

Genome editing CRISPR/Cas9 Ground cherry (Physalis pruinose), Cassava (Manihot esculenta) [82,113,114,115,116]

Speed breeding Chickpea (Cicer arietinum), cassava (Manihot esculenta) , finger millet(Eluesine coracana) [101]

Transcriptome  sequence Chickpea (Cicer arietinum) [117,118]

Genome sequence Enset (Ensete ventricosum), Pegion pea (Cajanus cajan), Cowpea (Cicer arietinum), Pearl 
millet(Pennisetum glaucum), chick pea (Cicer arietinum), 101 African crops

[117,119,126]

Proteome sequence Pearl millet (Pennisetum glaucum), Chickpea (Cicer arietinum) [127–129]

Eco tilling osmics Chickpea (Cicer arietinum) [130]

RNASeq Finger millet (Eluesine coracana), Chickpea (Cicer arietinum) [119,131,132]

GWAS Cassava (Manihot esculenta), finger millet (Eluesine coracana), chick pea (Cicer arietinum), 
foxtail millet (Setaria italica)

[11,133–135]



15Santhoshini et al.: Advancing in orphan crops through breeding and genomic approaches 2025;13(2):9-19

Traditional procedures, such as line selection from landraces, are used 
to better orphan crops. Introgressions using interspecific or intraspecific 
crossings are used in some orphan crop breeding initiatives. Through 
collaborations between institutions in rich and developing nations, 
innovative breeding technologies have recently been introduced for 
a number of orphan crops Table 2. Marker-based research, such as 
GWAS and GBS, are examples of sophisticated approaches (GWAS). 
EcoTILLING from wild species and TILLING from induced 
mutagenized populations are two high-throughput approaches that 
have been used to find alleles in orphan crops. The major goal of the 
AOCC is genome sequencing of one hundred and one African edible 
plants and improve the nutritional status of Africans by means of 
molecular breeding technologies and education [138]. Moreover, the 
partnership is committed to ensuring that its work is aligned with the 
United Nations Sustainable Development Goals, particularly those 
related to zero hunger, responsible consumption and production, and 
climate action. Transcriptomics and proteomics, among other omics 
methods, have been employed to explain gene transcription patterns 
of several underutilized crops. On Manihot esculenta (cassava) and, 
more recently, on groundcherry, genome alteration techniques such 
as CRISPR/Cas9 have been used [113,114]. Orphan crops such as 
cassava, millet, and teff can have their unwanted traits altered rapidly 
with the help of clustered regularly interspaced short palindromic 
technology [139].

7. CONCLUSION
Food security, especially in underdeveloped areas, and genetic 
diversity depend critically on minor or neglected crops. Despite their 
relevance, few researchers have paid much attention to these plants. 
As a result, major agricultural changes are needed to raise agricultural 
production for understudied crops to meet the developing world’s 
increasing population density. These collaborations among important 
stakeholders are required to address the issues, particularly in light 
of changing climate. Orphan crop varieties can be developed, tested, 
and released to the market much sooner if speed breeding is used in 
conjunction with different breeding methods and low-cost automated 
phenotypic and genotypic. Field testing, as well as farmer participation 
in the examination and assessment of elite breeding lines, will be 
critical in hastening the creation and spread of better cultivars.
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