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ABSTRACT

Mentha (Lamiaceae) is a medicinal, aromatic plant known globally as mint. Madinah mint (Saudi Arabia) is grown 
and consumed as a drink, flavor for tea, spice for food, and a home remedy. In this report, matK, rbcL rpoC1, 
and ycf5 genes, the intergenic region trnA-trnH from the plastid genome, along with the two nuclear loci internal 
transcribed spacers (ITS1 and ITS2) were tested as DNA barcodes for Madinah mint. DNA was extracted, polymerase 
chain reaction was amplified using specific primers, and the products were sequenced. The partial sequences of 
the matK gene from Madinah mint are identical to those from Mentha piperita, while sequences of the rbcL gene 
were identical to Mentha canadensis and Mentha spicata discriminating this species from M. piperita. Phylogenetic 
analysis using ITS1 or ITS2 showed that Madinah mint is a basic taxon to M. spicata and M. canadensis. Phylogenetic 
analysis based on a combination of ITS1 and ITS2 sequences showed that Madinah mint is ancestral to other Mentha 
species. The same analysis using rbcL gene sequences again put Madinah mint as an ancestor of both M. spicata 
and M. canadensis as well as Mentha suaveolens, which might suggest that they have shared the same origin of the 
maternally inherited plastid genome.

1. INTRODUCTION

The Lamiaceae is a large family composed of 264 genera and around 
7000 described species [1]. Square-like stems, whorl- or oppositely-
positioned leaves, and irregular or zygomorphic flowers, usually 
with a 2-lipped corolla, characterize plants belonging to this family. 
Species of this family are mostly herbs or shrubs and rarely trees. They 
are endemic in two main centers of biodiversity: the Mediterranean 
basin, central Asia, and subtropical regions [2]. The members of this 
family are known as medicinal and aromatic herbs such as mint, 
sage, thyme, basil, rosemary, lavender, and oregano, which have 
been widely used as spices, teas, or traditional medicines [3-6]. In 
Saudi Arabia and the Arab peninsula, some of these species, including 
Mentha are commonly used as hot drinks or tea, home-based ailment 
relievers, or spices for cooking due to their contents of aromatic oils 
and other secondary metabolites [7]. Therefore, many species of the 
Lamiaceae family are considered commercial commodities, such 
as the Madinah mint in Saudi Arabia. Many species and cultivars 
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of this family have been investigated for biochemical properties or 
taxonomic purposes [8-14]. While specific research on Madinah mint 
is limited, studies suggest that it possesses antioxidant, antimutagenic, 
and anticancer properties [15,16], and studies on related mint species 
suggest that it may possess antioxidant, antibacterial, antifungal, 
antiviral, and anticancer properties [17]. Further research is needed to 
fully understand the unique properties and potential health benefits of 
Madinah mint.

DNA barcoding is a technique developed by Hebert et al. [18] that 
relies on universal primers to amplify and sequence short universal 
DNA sequences. This technique has recently been applied as a 
universal tool for species authentication and identification [19-22]. 
The basic idea of this technique is to generate a standardized short 
DNA sequence(s) from any small tissue sample of a plant and compare 
it to any institutional library or international databases that contain 
reference sequences of the same or related species. This process will 
provide a rapid and reproducible taxonomic identification [18,23-29]. 
This method has been applied to identify members within the 
family Lamiaceae as well as to identify commercial processed spice 
species belonging to this family [10,11,30,31]. Herbs and spices 
are among trade commodities that can be adulterated, intentionally 
or accidentally, with morphologically similar plants. Hence, 
DNA barcoding would be a suitable technique to investigate and 
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characterize these commercialized herbs possibly to the genus or 
species level [32-38].

DNA barcoding in animals is well established [39-41], but in plants, 
it is important to search for a suitable genomic region to perform 
DNA barcoding. However, some regions were suggested by scientists 
from around the Globe as well as the Plant Working Group of the 
Consortium for the Barcode of Life [42-44]. The suggested DNA 
regions include coding sequences from the plastid genome such 
as matK, rbcL, rpoB, rpoC1, and ycf5, genes as well as intergenic 
spacers such as trnH-psbA, atpF-atpH, and psbK-psbI. Moreover, the 
nuclear ITS1 and ITS2 have also been proposed as efficient plant DNA 
barcoding regions [45-51]. Recently, combinations of matK + rbcL or 
ITSs were proposed by the CBOL Plant Working Group (https://ibol.
org) to increase the efficiency of plant species identification [43,52]. 
Even though a combination of the most appropriate regions for plant 
DNA barcoding and identification remains contentious and relies on 
trial and error [26,53-56].

The objective of this study is to investigate the applicability of DNA 
barcoding on the locally traded and available Madinah mint for 
authentication and identification. This study provided an evaluation 
of seven single candidate DNA barcoding loci and some of their 
combinations to identify the traded Madinah mint in Saudi Arabia.

2. MATERIALS AND METHODS

2.1. Plant Samples
Samples from traded Madinah mint were bought from the local market 
(Al-Ahsa, Saudi Arabia), which were used to test the performance 
of seven different candidate genomic regions for DNA barcoding 
analyses [Table 1].

2.2. DNA Isolation and Amplification
A sterile mortar and pestle were used to crush dry leaves (100 mg) under 
liquid nitrogen for DNA extraction. Dry leaves were used instead of 

fresh ones due to availability; they are more accessible in the Al-Ahsa 
region in eastern Saudi Arabia, whereas Madinah is located in the west. 
DNA was isolated using the Plant Genomic DNA Extraction Miniprep 
System (Viogene BioTek Corp., Taipei, Taiwan) to obtain high-
quality DNA, free of polysaccharides or other metabolites that might 
interfere with DNA amplification. The protocol of the manufacturer 
was followed. Purified DNA concentration of samples was estimated 
both fluorometrically using a NanoDrop 2000c instrument (Thermo 
Scientific, DE, USA) and by comparison of ethidium bromide-stained 
band intensities with DNA standard (Edvotek, Washington, USA). The 
extracted DNA purity was above 1.83 at A260/A280.

2.3. Polymerase Chain Reaction (PCR) Amplification
PCR amplification for each candidate locus was performed using 
GoTaq® DNA Polymerase (Promega, CA, USA) in a 25 μL reaction 
volume according to the manufacturer’s instructions. PCR protocols 
for the seven selected loci are listed in Table 1 that are all started with 
a denaturation step of 2 min at 95°C and ended with a final extension 
step at 72°C for 7 min.

One percent agarose gel size 7 × 7 cm was prepared for electrophoreses 
of amplified PCR products in ×1 TAE buffer. The gel was stained with 
ethidium bromide (0.5 μg/mL) in ×1 TAE buffer. Gel images were 
obtained using Benchtop 3UVTM transilluminator equipped with a 
BioDoc-It Imaging System (UVP, CA, USA). The size and presence 
or absence of amplified PCR products were determined on gel using 
a standard DNA ladder (Edvotek, Washington, USA). The ladder 
shortest fragment is 570 bp, and the longest is 23130 bp.

2.4. DNA Sequencing
PCR-amplified DNA was purified and bi-directionally sequenced 
by Macrogen Inc., Korea (http://www.macrogen.com). Forward and 
reverse sequences were obtained using the same primers that were used 
for PCR amplification, manually edited, and the 3’ and 5’ terminals 
were clipped to generate consensus sequences for each locus.

Table 1: Primers and PCR conditions for the seven selected DNA barcoding loci tested against Madinah mint in the present study [53].

Locus Primer’s Name Primer sequences (5’‑3’) Length (bp) PCR cycle conditions Cycles

matK matKF CgATCTATTCATTCAATATTTC 23 95°C 1 min
50°C 30 s

72°C 1 min

35

matKR TCTAgCACACgAAAgTCgAAgT 22

rbcL rbcLF ATgTCACCACAAACAgAAAC 20 95°C 1 min
55°C 30 s

72°C 1 min

35

rbcLR TCgCATgTACCTgCAgTAgC 20

trnA‑H trnA‑HF gTTATgCATgAACgTAATgCTC 22 95°C 1 min
55°C 30 s

72°C 1.5 min

35

trnA‑HR CgCGCATggTggATTCACAATCC 23

rpoC1 rpoCF ggCAAAgAgggAAgATTTCg 20 95°C 1 min
53°C 40 s
72°C 40 s

40

rpoCR CCATAAgCATATCTTgAgTTgg 22

ycf5 ycf5F ACTTTAgAgCATATATTAACTC 22 95°C 1 min
53°C 40 s
72°C 40 s

40

ycf5R ACTTACgTgCATCATTAACCA 21

ITS1 ITS1F CCTTATCATTTAgAggAAggAg 22 95°C 1 min
50°C 30 s

72°C 1.5 min

35

ITS1R TCCTCCgCTTATTgATATgC 20

ITS2 ITS2F ATgCgATACTTggTgTgAAT 20 95°C 1 min
56°C 30 s
72°C 45 s

40

ITS2R gACgCTTCTCCAgACTACAAT 21

PCR: Polymerase chain reaction
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2.5. Data Analysis and Madinah Mint Delimitation
The Basic Local Alignment Search Tool (BLAST) [57] from the 
National Center of Biotechnology Information (NCBI) was used to 
search for relevant sequences in the NCBI and Barcode of Life Data 
databases. Clustal W [58] and Genetyx software (Genetyx, Tokyo, 
Japan) were used to align sequences obtained from the tested species 
and relevant sequences that were retrieved from the international 
databases. Pair-wise sequence comparisons of closely related plant 
species were conducted using BLAST2 Sequences [59] and Genetyx 
software (Genetyx, Tokyo, Japan). The Neighbor-Joining method of 
MEGA 11 [60] was used for phylogenetic analyses. The topologies of 
the phylogenetic trees were evaluated using the bootstrap re-sampling 
method of Felsenstein [61] and 1000 replicates. Phylogenetic trees 
have been built by applying the data to MEGA 11 [60], and the 
options were as follows; Statistical method: Neighbor-Joining, Test 
of phylogeny: Bootstrap method (1000 replicates), Model/Method: 
p-distance, Substitutions to Include: d: Transitions + Transversions, 
Rates among Sites: Uniform rates, Pattern among Lineages: Same 
(Homogeneous), Gaps/Missing Data Treatment: Pairwise deletion, 
and Select Codon Positions: 1st + 2nd + 3rd + non-coding.

3. RESULTS

3.1. Amplification and Sequencing of Seven DNA Barcoding 
Candidate Loci
A good yield of high-quality DNA was obtained from the Madinah 
mint samples under study. The first step of this work was to empirically 
test the universality of seven DNA barcoding candidate loci [Table 1]. 
Therefore, PCR amplification was conducted in different trials. The 
first trial was performed under standard PCR conditions starting from 
around 50 ng of template DNA. The second trial was applied only on 
loci that generated multiple and/or non-specific PCR products or did 
not generate any amplicons, where higher annealing temperature was 
applied. Loci and template DNA samples that failed to amplify were 
tried under lower stringency conditions through reduced annealing 
temperature and/or increased number of cycles. In case of failure of 
both trials, 0.5 or 1 μL of PCR products from both trials were then 
used as template DNA and re-amplified. PCR was considered a 
failure only in case of negative amplifications under all these different 
conditions. Samples of traded Madinah mint tested against the seven 

Figure 1: Polymerase chain reaction amplification of ITS2 from 
Madinah mint (M). (Mar) refers to a DNA ladder (Edvotek, Washington, 

USA). The ladder shortest fragment is 570 bp and the longest is 23130 bp. Ta
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Figure 2: Sequences alignment of rpoC1 from Madinah mint and M. aquatica reveals a single single nucleotide polymorphism.

Figure 3: Evolutionary relationships of taxa inferred using the Neighbor-Joining method [87] based on (a) matK, (b) rbcL, and (c) matK + rbcL sequences. The 
percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [61]. The tree 

is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances 
were computed using the p-distance method [88] and are in the units of the number of base differences per site. Codon positions included were 1st + 2nd + 3rd. All 

ambiguous positions were removed for each sequence pair. Evolutionary analyses were conducted in MEGA 11 [60].

cba

Figure 4: Evolutionary relationships of taxa inferred using the Neighbor-Joining method [87] based on (a) ITS1, (b) ITS2, and (c) ITS1 + ITS2 sequences. The 
percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [61]. The tree 

is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances 
were computed using the p-distance method [88] and are in the units of the number of base differences per site. All ambiguous positions were removed for each 

sequence pair. Evolutionary analyses were conducted in MEGA 11 [60].

cba

selected loci exhibited 100% PCR amplification success after applying 
these different trials [Figure 1]. The amplified PCR products of the 
seven DNA loci were successfully sequenced, and high-quality bi-
directional sequences were obtained. Sequences were submitted to 
the NCBI database, and accession numbers were acquired (matK; 
PV031553, rbcL; PV031554, rpoC1; PV031555, ycf5; PV031556, 
ITS1; PQ836415, ITS2; PQ836431).

3.2. Data Analysis
Based on a homology search of the database using sequences obtained 
from the plastid matK gene, Madinah mint is 100% (766bp) identical 
to M. piperita, but very similar to M. spicata, Mentha aquatica, 
Mentha longifolia, Mentha pulegium and M. suaveolens (99.9%; 753-
68 bp), some transitions/transversions were observed [Table 2]. Using 
the matK gene sequence from Madinah mint as a reference, a transition 
from (G) to (A) at position 641 was observed in M. canadensis, M. 
spicata, and M. suaveolens, from (A) to (G) in M. aquatica at position 
(5), from (C) to (T) in M. longifolia at position 430, and from (T) to (C) 
in M. canadensis at position 595. One transversion from (A) to (T) was 
observed in M. pulegium at position 21. An indel (insertion/deletion) 
of 6 bp direct repeat was also observed in Mentha cervina and Mentha 
arvensis at the same position (76–81), which indicates that these later 
species share the same ancestral plastid genome that is different from 
other species, at least in this part of DNA.

When homology search of the NCBI database was performed using 
sequences obtained from the plastid rbcL gene of Madinah mint as 

a query, it was 100% (666-70 nt) identical to M. canadensis and 
M. spicata as well very closely related to M. suaveolens (99.9%; 
670 bp) with only one base transition from (T) to (C) at position 438. 
However, it is also related to M. longifolia (99.7%; 670bp) with two 
transitions from (C) to (T) at position 81 and (A) to (G) at position 311. 
A base identity of 99.7% (670bp) was also detected between Madinah 
mint and M. aquatica with two transversions of (A) to (C) at position 
615 and (T) to (G) at position 625 [Table 2].

When BLAST was applied to search the NCBI database using 
sequences obtained from the intergenic region trnA-trnH from Madinah 
mint as a query, it did not retrieve any Mentha spp. similarities except 
for Chenopodium spp. and other related taxa with base identity ranging 
between 80.8% in Chenopodium foliosum and 87.2% in Chenopodium 
album. Sequences of the rpoC1 gene from Madinah mint retrieved a 
single similarity that is M. aquatica (99.7% base identity), where there 
is only one transversion from (C) to (A) at position 148 [Figure 2]. 
The ycf5 sequences of Madinah mint resulted in similarities to 
M. x piperita, M. spicata, and M. canadensis (98.92%) [53].

Homology search of the database using sequences of ITS1 distanced 
Madinah mint from M. pulegium and M. piperita (93.2% identity; 
585-9  bp) as well as M. arvensis (93.4% identity; 580bp), but 
M. suaveolens scored 97.8% identity (584  bp). Yet, Madinah mint 
remained closely related to M. spicata and M. canadensis (98.1 and 
98.5% identity, respectively; 584 bp). Likewise, a homology search of 
ITS2 sequences showed that Madinah mint is distant from M. pulegium 
and M. piperita (92.4 and 92.9% identity, respectively; 302-50 bp) as 
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well as M. suaveolens (96.8% identity; 312 bp), but remained closely 
related to M. spicata and M. canadensis (99.4% identity; 340-50 bp).

4. DISCUSSION

The BLAST, genetic distance and tree topology are some of the 
techniques applied to compare DNA sequences obtained from different 
living organisms for the purpose of molecular identification and 
delimitation [55,62-65]. DNA barcoding is a developed technique that 
uses specific DNA sequences to identify living organism species [18]. 
In plants, several DNA loci, either from the plastid organelle or 
nuclear genomes, were proposed by the Plant Working Group of the 
Consortium for the Barcode of Life [42-44]. These suggested DNA 
barcodes included coding sequences from matK, rbcL, rpoB, rpoC1, 
and ycf5 genes, as well as trnH-psbA, atpF-atpH, and psbK-psbI 
intergenic spacers of the plastid genome. Besides, the nuclear ITS1 
and ITS2 have also been proposed as efficient plant DNA barcoding 
loci [43,45,47-50,66]. Another suggestion from the CBOL Plant 
Working Group (www.barcoding.si. edu/plant_working_group. html) 
is to use combinations of matK + rbcL or ITSs for DNA barcoding so as 
to increase the efficiency of plant species identification [43,67,68]. Yet, 
a combination of two or more appropriate loci for plant DNA barcoding 
remains debatable and requires multiple trials [26,53,54,69-71].

In this study, partial coding sequences from matK, rbcL, rpoC1, and 
ycf5 genes, beside noncoding sequences from the intergenic space 
trnA-trnH as well as ITS1 and ITS2 were tested against one of the most 
traded and famous Mentha in Saudi Arabia; Madinah mint. Sequences 
obtained from these loci of Madinah mint were applied to BLAST 
search on the international database.

The matK gene is often challenging to amplify and sequence using 
PCR due to its high sequence variability and complex secondary 
structure [44,72-75]. This study has successfully amplified and 
sequenced this region from the Madinah mint and was able to 
differentiate it from other Mentha species available on the database, 
except for M. piperita, which was 100% identical. The matK 
sequence of Madinah mint showed a single unique single nucleotide 
polymorphism (SNP) with M. spicata, M. aquatica, M. longifolia, 
M. pulegium, and M. suaveolens and 2 SNPs with M. canadensis 
[Table 2]. These SNPs could be very useful in the authentication and 
identification of Mentha species. SNPs were applied in authentication 
and identification of other plant species such as Morinda umbellata and 
Matelea reticulata [76], Coffea canephora and Coffea congensis [77], 
Diospyros mespiliformis and Diospyros brandisiana [28] and Patrinia 
species [78]. Phylogenetic analysis using the Neighbor-Joining 
method with partial sequences from matK gene was able to reveal the 
molecular evolution of Madinah mint that formed a basic phylogenetic 
clade and seems to be ancestral to most Mentha species that were 
retrieved from the database [Figure 3a].

In plants, the most commonly amplified and sequenced gene for 
taxonomic and phylogenetic studies is the plastid rbcL [79-81]. Hence, 
sequences of the rbcL gene from Madinah mint were obtained, and 
they were able to discriminate this species from other retrieved species, 
except that they were identical to sequences from M. canadensis and 
M. spicata [Table 2 and Figure 3b]. Plastid rbcL gene is well accepted 
in phylogenetic studies of plants, but delimiting a taxa to a single 
species based on rbcL gene alone is difficult, especially in closely 
related species [28,82-86] such as Mentha. Phylogenetic analysis 
using the Neighbor-Joining method and partial sequences from the 
rbcL gene revealed that Madinah mint is ancestral to M. suaveolens, 
M. canadensis, and M. spicata. Therefore, it is possible to say that the 

obtained partial sequences of matK and rbcL genes were fully capable 
of delimiting Madinah mint and can be applied to discriminate it from 
similar species due to these observed nucleotide differences.

The intergenic space trnA-trnH sequences from Madinah mint was not 
able to retrieve any similar Mentha species except for related taxa, 
probably due to a lack of similar sequences from Mentha species 
available in the database. Sequences of the plastid rpoC1 gene from 
Madinah mint showed 100% base identity with M. spicata, but 99.78% 
with M. aquatica [Figure 2]. Yet, this partial rpoC1 sequence can be 
applied as a DNA marker to differentiate between these two species, 
Madinah mint and M. aquatica based on detected SNPs. Alaklabi 
et al. [28] used SNPs found in a partial rbcL gene sequence to validate 
and differentiate D. mespiliformis tree. Sequences of the ycf5 gene 
showed that Madinah mint is similar to M. x piperita, M. spicata, and 
M. canadensis (98.92%). The ycf5 gene was applied in the study of 
inter/intra-specific variation of medicinal plant species [53].

In agreement with plastid loci above, the nuclear ITS1 and ITS2 
were very successful and able to discriminate Madinah mint from 
all other Mentha species available on the database, despite the close 
relationships with some species. ITS1 and ITS2 can be applied 
as species-specific markers or DNA barcodes for the purpose of 
authentication and identification of this species of Mentha traded 
under the name Madinah mint in Saudi Arabia. The ITS region has 
been utilized as a DNA barcode to help identify over 21,000 plant 
species [51].

Phylogenetic analyses utilizing various genetic markers have provided 
insights into the evolutionary relationships of Madinah mint. The matK 
gene analysis positioned Madinah mint as a basal lineage to other 
Mentha species, excluding M. cervina [Figure 3a]. Conversely, rbcL 
sequence analysis placed Madinah mint as ancestral to M. canadensis, 
M. spicata, and M. suaveolens, while sharing a common origin with 
M. aquatica and M. longifolia [Figure  3b]. Combining both matK 
and rbcL data positioned Madinah mint as ancestral to all species 
except M. longifolia [Figure  3c]. When ITS1 or ITS2 sequences 
were used, Madinah mint appeared as ancestral to or a sister species 
of M. canadensis and M. spicata [Figure  4a and b]. However, the 
combined sequence analysis aligned with the results from matK and 
rbcL, positioning Madinah mint as a basal taxon to other species 
[Figures 3a-c and 4c]. This pattern is likely due to the shared origin of 
maternally inherited plastid genomes among these species [47].

5. CONCLUSION

Based on sequences alignment and phylogenetic analysis, this study 
demonstrated a very close relationship between Madinah mint and 
other related Mentha species based on at least partial coding sequences 
from two plastid genes (matK and rbcL) and two non-coding partial 
sequences from the nucleus (ITSs). The present findings showed that 
partial sequences of matK and rbcL genes were able to delimit the 
Madinah mint to its species level. The partial sequences obtained from 
the trnA-trnH intergenic space were not able to retrieve similar Mentha 
species probably due to lack of these sequences in the database. The 
sequences from ycf5 gene differentiated Madinah mint from M. x 
piperita, M. spicata and M. canadensis. However, sequences from the 
nuclear ITS1 and ITS2 were able to position Madinah mint close to M. 
spicata and M. canadensis, yet, there were some differences. Therefore, 
it is recommended to use SNPs detected during this study in sequences 
of matk and rbcL genes and/or ITSs to authenticate and identify Madinah 
mint that is mixed in trade with other related species. Phylogenetic 
analysis using the Neighbor-Joining method and sequences from the 
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rbcL gene were able to evolutionary position Madinah mint to a distinct 
phylogenetic clade with M. suaveolens, M. spicata, and M. canadensis, 
which may suggest that these three species have shared the same origin 
of the maternally inherited plastid genome.
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