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ABSTRACT

The search for alternative renewable energy sources has mounted interest in biomethane as a viable substitute for fossil 
fuels. This study explores the anaerobic digestion of petroleum coke, a recalcitrant byproduct of oil refining, enhanced 
by coal mine-derived microbial inoculum and magnetic iron oxide (Fe2O3) nanoparticles (NPs). The Fe2O3 NPs were 
obtained through the coprecipitation technique. A central composite design within Response Surface Methodology 
was employed to optimize three variables; pet coke concentration, inoculum size, and NPs dosage. Scanning electron 
microscopy results of the synthesized NPs showed quasi-spherical morphology, particle aggregation, and distinct 
crystalline. X-ray diffraction peaks indicative of spinel-type ferrites, confirming a magnetite-based structure. 
Analysis of variance results of the linear model present a moderate coefficient of determination (R2 = 0.5799) for the 
model, indicating its adequacy for prediction. The optimized conditions for biomethane production were determined 
as follows: Feedstock (Pet coke) concentration of 8 g/L, Inoculum of 8 % (v/v), and 40 mg/L of magnetic iron oxide 
NPs. Under the optimized conditions, the model predicted a biomethane yield of 33.2%, which closely aligned with 
the experimentally observed yield of 32 %; the difference was not statistically significant (P = 0.158) reliability. 
Validation experiments substantiated the model reliability. The gas chromatography analysis of the generated gas 
revealed a methane concentration of 55.86 wt%, thereby illustrating significant bioenergy potential. The integration 
of microbial consortia and NPs strategies offers a promising alternative for converting industrial residues, such as 
pet coke into sustainable biofuels.

1. INTRODUCTION

Bioenergy constitutes a crucial category of renewable energy obtained 
from biological substances, including but not limited to wood, 
animal waste, straw, and an array of agricultural by-products [1]. 
It is considered one of the most feasible short to medium strategies 
for mitigating greenhouse gas emissions and substituting traditional 
fossil fuels. The increasing global energy demand and mounting 
environmental concerns associated with fossil fuel consumption have 
intensified the search for sustainable and clean energy alternatives [2]. 
Among the diverse spectrum of renewable energy sources, biomethane 
has surfaced as a noteworthy biofuel owing to its elevated 
energy density and its congruity with the pre-existing natural gas 
infrastructure [3]. Anaerobic digestion (AD), a microbial process that 
breaks down organic matter to produce biogas, mainly methane and 
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carbon dioxide, has been increasingly adopted in recent years [4,5]. 
Conventionally used for agricultural and municipal waste treatment, 
the scope of AD has expanded to include complex and energy-dense 
feedstocks. One such unconventional yet underexplored feedstock is 
petroleum coke (pet coke), a carbon-rich byproduct of oil refining that 
presents both a disposal challenge and an opportunity for bioenergy 
valorization [6].

Pet coke is characterized by its high calorific value and carbon 
content but poses substantial barriers to microbial degradation 
due to its low biodegradability, aromatic structure, and high sulfur 
content [7]. To circumvent these limitations, biological pre-treatment 
and enhancement strategies, such as the incorporation of specialized 
microbial consortia and functional nanomaterials, have been 
recently explored. In particular, microbial consortia derived from 
coal mine environments have shown unique metabolic adaptability 
and resilience under harsh conditions, making them ideal inocula 
for tackling recalcitrant carbonaceous substrates, such as pet 
coke [8,9]. These microbial communities often possess anaerobic 
hydrocarbon degrading capabilities that can facilitate the breakdown 
of pet coke components into intermediate compounds suitable for 
methanogenesis.

Journal of Applied Biology & Biotechnology 2025. Article in Press 
Available online at http://www.jabonline.in

ARTICLE INFO

Article history: 
Received on: 17/06/2025 
Accepted on: 19/08/2025 
Available online: ***

Key words: 
Peak coke,  
Biomethane,  
Inoculum size,  
Magnetic Iron oxide NPs,  
Anaerobic digestion,  
Response surface methodology.

DOI: 10.7324/JABB.2026.265069

anaerobic digestion using microbial inoculum and Fe O2 3



Rajarathinam and Yousif: Journal of Applied Biology & Biotechnology 2025: Article in Press2

Furthermore, the incorporation of magnetic iron oxide nanoparticles 
(NPs) into the AD system introduces a novel approach to improving 
process efficiency [10]. These NPs have the capacity to augment 
microbial activity through the facilitation of electron transfer, the 
enhancement of enzyme accessibility, and the potential reduction of 
toxic intermediates [11]. Their magnetic attributes also allow for easier 
recovery and recycling, adding a layer of economic and environmental 
sustainability. So also, the utilization of magnetic Fe₂O₃ NPs to 
improve AD of pet coke represents a novel approach, as the interaction 
between iron-based nanocatalysts and a resistant carbon-rich substrate 
has not been thoroughly explored. However, despite their potential of 
these enhancements, the synergistic effects of biomass concentration, 
inoculum size, and NP dosage remain largely unoptimized and poorly 
understood.

To systematically investigate and optimize these critical parameters, 
this research employs Response Surface Methodology (RSM), a robust 
statistical and mathematical tool used for modeling and analyzing 
problems in which multiple variables influence the desired response. 
RSM facilitates the development of empirical models that can predict 
biomethane yield under various operational conditions and identify 
optimal combinations of the input variables [12]. This methodology 
not only augments the efficacy of the experimental framework by 
diminishing the quantity of necessary trials but also elucidates the 
interactive influences among variables, which are frequently neglected 
in conventional one-factor-at-a-time approaches [13,14].

The objective of this study is to optimize biomethane production 
from pet coke using AD, with a specific focus on three key variables: 
Biomass (pet coke) concentration, inoculum size (coal mine microbial 
consortium), and magnetic Fe2O3 NPs concentration. Across the 
application of RSM, the study aims to maximize methane yield. 
This research not only contributes to advancing sustainable biofuel 
production from industrial residues but also offers a strategic 
framework for integrating novel materials and microbial consortia 
into AD systems. In addition, the successful optimization of such a 
system could pave the way for valorizing pet coke waste streams, 
reducing environmental burdens, and creating a feasible pathway for 
decentralized renewable energy generation.

2. MATERIALS AND METHODS

2.1. Materials
2.1.1. Chemicals
All chemicals used in this work were of analytical grade, purchased 
from Sisco Research Laboratories Pvt. India and used as received 
without further purification. All chemicals were of analytical grade 
(≥99% purity) and used without further purification.

2.1.2. Feeds stock
Petroleum coke (pet coke) used in this study was sourced from 
Chennai Petroleum Corporation Limited (CPCL), Chennai, Tamil 
Nadu, India . The material was ground and sieved to a uniform particle 
size (<250 µm) to attain homogeneity and improve surface area for 
microbial action. A preliminary hydrogen sulfide (H2S) screening test t 
was conducted to assess potential inhibition by the feedstock. The pet 
coke was also characterized before use for key parameters, including 
elemental composition (C, H, S, N, and O), moisture content, and 
ash content using standard methods (ASTM D3176 and D5865). 
All parameters were analyzed and triplicate and the mean standard 
deviation was calculated.

2.1.3. Microbial inoculum
The microbial inoculum was procured from anaerobic sludge sampled 
from coal mine effluent sedimentation tanks in Telangana district 
(Coordinates: 17.20613, 80.79979). The microbial community was 
enriched under strictly anaerobic conditions for three weeks in a basal 
mineral medium supplemented with coal-derived organics to promote 
the proliferation of hydrocarbon-degrading anaerobes.

2.1.4. Magnetic iron oxide (Fe2O3) NPs
Magnetic Iron oxide (Fe2O3) NPs were synthesized through 
coprecipitation of ferrous and ferric salts in an alkaline environment, 
followed by functionalization with ionic liquids comprising 
biocompatible cations and anions, as elucidated by [15,16]. The 
NPs were characterized using scanning electron microscopy (SEM) 
and X-ray diffraction (XRD) recorded using a PANlytical X’Pert 
PRO Diffractometer with Kα radiation (λ = 1.5406 Å), to confirm 
morphology, crystalline structure, and surface functionality. The 
NPs were added in varying dosages (mg/L) based on experimental 
design.

2.2. Fermentation Experiments and Analytical Methods
Batch AD experiments were conducted using a 500 mL Erlenmeyer 
flask with a working volume of 400  mL. Each bottle was loaded 
with the required amount of pet coke, inoculum, and NPs as per the 
experimental design (Figure 1). The medium was adjusted to a pH of 
7.0 ± 0.2 and subjected to nitrogen gas purging for 10 min to ensure 
anaerobic conditions; all reactors were maintained at 37 ± 1°C for 
30 days in a controlled shaker (100  rpm), with controls lacking pet 
coke, inoculum, or NPs to assess baseline methane production. Biogas 
production was monitored daily by the water displacement method. 
The methane concentration within the biogas was analyzed through 
gas chromatography (GC) (HP-PLOT Q (30  m × 0.32  mm, 20 μm 
film, Helium at 1.2 mL/min) integrated with a thermal conductivity 
detector alongside a stainless-steel packed column. The calibration 
was performed using standard gas mixtures with R2 > 0.995.

2.3. Experimental Design and Statistical Analysis
A two-level central composite design factorial design, under RSM was 
employed to optimize the process parameters affecting biomethane 
yield. The independent variables selected were pet coke concentration 
(A: 4–10g/L), inoculum size (B: 5–2-8% (v/v)), and magnetic Fe2O3 
NPs dosage (C: 10–40 mg/L), which are shown in Table 1. The ranges 
were determined based on preliminary experiments, ensure optimal 
biomethane yield. The dependent variable (response) was cumulative 
methane production (CH4 %). Design-Expert software (version  13) 

Figure 1: Digital photos showing parts of sample during biomethane 
production experiment.



Rajarathinam and Yousif: Optimization of biomethane production from pet coke through anaerobic digestion: Article in Press 3

Table 2: Experimental design for RSM.

Standard Run Factor 1: Pet 
coke (A) (g/L)

Factor 2: Inoculum 
size %(v/v)

Factor 3: Magnetic 
Fe2O3 NPs (mg/L)

Actual response: 
Biomethane (%)

Predicted response 
values (%)

7 1 4 8 40 27.8 25.2

9 2 6 6 25 26.4 20.9

6 3 8 4 40 32.6 28.4

12 4 6 6 25 25.3 20.9

4 5 8 8 10 18.7 21.5

8 6 8 8 40 32.1 33.3

1 7 4 4 10 16.3 8.4

10 8 6 6 25 16.5 20.9

3 9 4 8 10 14.3 13.3

2 10 8 4 10 13.6 16.6

5 11 4 4 40 12.8 20.3

11 12 6 6 25 13.9 20.9

18 13 6 6 50.2 28.6 30.1

17 14 6 6 0.23 5.7 11.1

19 15 6 6 25 28.7 21

16 16 6 9.4 25 24.8 25.1

14 17 9.4 6 25 27.9 27.9

13 18 2.6 6 25 10.2 14.2

20 19 6 6 25 26.8 21.01

15 20 6 2.6 25 15.4 16.9

Table 1: Independent‑dependent variables and limit values.

Name Unit Type Standard deviation Minimum Maximum

Pet coke g/L Independent 0 4 10

Inoculum size %(v/v) Independent 0 2 8

Magnetic iron oxide nanoparticles mg/L Independent 0 10 40

was used for the design matrix generation, regression analysis, and 
response surface modeling. The respective variables are shown in 
Table 1, while the generated experimental designed with predicted and 
actual response are shown in Table 2.

3. RESULTS AND DISCUSSION

3.1. Proximate Analysis of Pet Coke
Proximate analysis provides insights into the thermal decomposition 
and organic content of pet coke, which are critical for assessing its 
suitability in AD [17]. The result of proximate analysis for pet coke 
are shown in Table 3. The extremely low moisture content indicates 
that pet coke is a dry, hydrophobic material [18]. While this property is 
advantageous for storage and combustion, it presents a challenge in AD, 
where water is essential for microbial activity. The negligible volatile 
matter content suggests that pet coke contains very few compounds 
that can be easily gasified or metabolized by microorganisms [19]. 
This aligns with its highly condensed aromatic structure, which is 
resistant to biological breakdown.

3.2. SEM and XRD of Magnetic Fe2O3 NP
The SEM image of the synthesized magnetic ionocide NPs is 
presented in Figure  2a, revealing a relatively uniform and dense 
particle distribution. The NPs exhibit a quasi-spherical morphology 

and tend to aggregate a typical behavior observed in magnetic NPs due 
to dipole-dipole interactions [20]. Based on the scale bar (~500 nm), 
the individual particles appear to range between 40 nm and 80 nm in 
size, though aggregation may lead to an overestimation of their actual 
dimensions. In addition, the particles exhibit a rough texture, which 
could influence their surface area and reactivity.

The XRD pattern [Figure 2b] displays distinct peaks with corresponding 
2θ values and Miller indices suggesting the crystalline nature of the NPs. 
The notable peaks at 218, 220, and 308 corresponds to plane, which 
are characteristic of spinel-type cubic ferrite structures, especially 
magnetite (Fe3O4) or maghemite (γ-Fe2O3), confirming magnetic iron 
oxide NPs [16,21]. The sharpness and intensity of the peaks indicate 
good crystallinity. So also, the most intense peak at 311 at an angle theta 
~35.8° typically indicates the presence of magnetite [22].

3.3. RSM Model Equation
RSM is a widely applied statistical and mathematical approach 
used to model and optimize processes influenced by multiple 
variables [23]. Its primary objective is to determine the optimal 
conditions that maximize or minimize a desired response. In this 
context, the variables that influence the process are referred to as 
independent variables, whereas the outcomes or results are termed 
dependent variables [24]. For instance, biomethane yield (response) 
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Table 4: Lack of fit test.

Model P‑value lack of fit 
P value

Adjusted 
R2

Predicted 
R2

Linear 0.001 0.5857 0.5799 0.4135 Suggested

2FI 0.4083 0.5804 0.5837 0.1032

Quadratic 0.7433 0.4492 0.513 −0.2606

Cubic 0.7287 0.1583 0.38 −57.6972 Aliased

may be influenced by variables, such as X₁ (biomass concentration) 
and X₂ (inoculum size), with the yield varying across different 
combinations of these variables. The selection of independent 
variables and their respective limits is typically based on previous 
experimental studies or literature. In RSM, the experimental data 
are fitted to appropriate statistical models, which may include 
linear, quadratic, cubic, or two-factor interaction (2FI) models 
[14]. The model coefficients comprise a constant term, linear 
coefficients (A, B, C), interaction coefficients (AB, AC, BC), and 
quadratic coefficients (A2, B2, C2). The highest biomethane yield 
was obtained at a feedstock concentration of 8  g/L pet coke, with 
8% (v/v) inoculum and 40 mg/L of magnetic iron oxide NPs. Under 
these conditions, the predicted biomethane yield was 33.2%, whereas 
the observed yield was 32.1%. Paired T-test confirmed no statistically 
significant difference between the two (P = 0.158).

The adequacy of the fitted model is evaluated through various 
statistical parameters, including the coefficient of determination 
(R2), adjusted R2, and adequate precision [25]. A model is generally 
considered statistically significant and reliable if the P-value < 0.05, 
the lack of fit P-value > 0.05, R2 > 0.9, and adequate precision >4. 
Furthermore, analysis of variance (ANOVA) is employed to assess 
the statistical significance of the model and the differences between 
treatment means [26].

3.4. Model Test Result
The selection of an appropriate model is a critical step in RSM as it 
significantly influences the accuracy and reliability of predictions 
related to biomethane yield [27]. In the present research work, various 
models, including linear, two-factor interaction (2FI), quadratic, and 
cubic, were evaluated to identify the best fit for the experimental data 
obtained from the AD of pet coke.

As presented in Table  4, the linear model demonstrates statistical 
significance with a P = 0.001, signifying that the model is significant and 
capable in explaining a substantial variation of biomethane production. 
The non-significant lack of fit P = 0.5857 indicates that the model 
sufficiently fits the empirical data, exhibiting minimal unexplained 
variability. Moreover, the model’s Adjusted R2 (0.5799) and predicted 
R2  (0.4135) values demonstrate moderate levels of explanatory and 
predictive efficacy, respectively. The relatively close alignment 
between these two metrics further substantiates the appropriateness of 
the linear model [28]. However, the 2FI model yielded a higher P = 
0.4083, signifying that the interaction terms between factors did not 
significantly enhance model performance. As shown in Table  4 the 
adjusted R2 value (0.5837) of the 2FI model was marginally higher 
than that of the linear model and the predicted R2 (0.1032) was notably 
low, reflecting poor predictive ability. The non-significant lack of fit 
(P = 0.5804) does suggest that the model was not overfitting the data, 
but the weak prediction performance rendered it less favorable [29]. 
In addition, the quadratic model was found to performed poorly as 
evidenced by a high P-value (0.7433), a negative predicted R2 (−0.2606), 
and a relatively low adjusted R2 (0.513). These results imply that the 
model neither captures the variability in the response nor has predictive 
reliability. The insignificant lack of fit (P = 0.4492) was not sufficient to 
offset its poor performance metrics. Similarly, the cubic model showed 
the least reliability, with a high P-value (0.7287), a negative adjusted 
R2 (0.38), and an extremely poor predicted R2 (−57.6972), indicating 
severe overfitting or model misspecification. Furthermore, despite a 
non-significant lack of fit (P = 0.1583), this model was deemed aliased, 
meaning some terms are confounded and cannot be uniquely estimated, 
further disqualifying it for practical use.

Table 3: Proximate and ultimate analysis of pet coke.

Parameter Pet coke (wt.%)

Moisture 0.46±0.02

Ash 13.22±0.01

Volatile matter 1.91±0.03

Carbon 72.54±0.1

Hydrogen 3.46±0.02

Sulfur 6.70±0.04

SiO2 1.20±0.01

AL2O3 0.22±0.01

CaO 0.14±0.04

MgO 0.02±0. 01

TiO2  0.0 2±0.01

Na2O 0.17±0.03

Fe2O3 0.16±0.02

K2O 0.003±0.01

Figure 2: SEM (a) and XRD (b) analysis of magnetic Fe2O3 nano particles.

a b
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Table 5: ANOVA analysis for linear model.

Source Sum of 
squares

df Mean 
square

F‑value P‑value

Block 0.1141 1 0.1141

Model 787.21 3 262.4 9.28 0.001 Significant

A‑pet coke 226.1 1 226.1 8 0.0127

B‑inoculum 
size

81.73 1 81.73 2.89 0.1097

C‑magnetic 
Fe2O3 NPs

479.39 1 479.39 16.96 0.0009

Residual 423.97 15 28.26

Lack of fit 304.75 11 27.7 0.9296 0.5857 Not significant

Pure error 119.21 4 29.8

Cor total 1211.29 19

3.5. ANOVA analysis for linear model
The ANOVA results presented in Table  5 provide essential insights 
regarding the factors affecting biomethane production in AD of 
pet coke. The model shows statistical significance, exhibiting an 
F-value of 9.28 and a P = 0.001. This indicates that the selected 
process variables, pet coke concentration (A), inoculum size (B), 
and magnetic ionocide NPs (C), collectively have a significant effect 
on biomethane yield, validating the adequacy of the fitted model in 
describing the experimental data. Among the individual factors, 
pet coke concentration exhibited a significant effect on biomethane 
production (F = 8.00, P = 0.0127). Variations in substrate load notably 
affect microbial activity and methane production. However, magnetic 
Fe2O3 NPs exhibited the highest significance (F = 16.96, P = 0.0009) 
among the tested variables. This is likely linked to their ability to 
enhance microbial metabolism and improve AD efficiency. Inoculum 
size was not significant (F = 2.89, P = 0.1097) at the 95% confidence 
level. Its impact may be more evident under varied conditions than 
those examined here. This can be supported with evidence that 
microbial processes are widely affected by multiple factors [30,31]. 
The insignificance indicates that optimization should focus on pet 
coke concentration and magnetic Fe2O3 NPs dosage for enhanced 
biomethane yield. Moreover, the lack of fit test was found to be non-
significant with p value equating to 0.5857. This denotes that the 
developed model fits the experimental data and that the variation in the 
response can be explained by the model terms [12,32]. The relatively 
low pure error and residual mean square values support the model’s 
reliability and predictive capability. Overall, the statistics confirm that 
the model is moderately predictive and suitable for further optimization 
of biomethane production.

The regression coefficient analysis is presented in Table 6 revealing 
C (Fe2O3) factor had the most significant influence on biomethane 
yield with a coefficient of 5.92 and a P = 0.0009, respectively. Both 
factors showed a positive and statistically significant effect, indicating 
that increasing these parameters enhances biomethane production 
during the AD of pet coke. However, factor B exhibited a positive but 
statistically insignificant effect P = 0.1097, implying that its individual 
contribution to the response may be limited or dependent on interaction 
with other variables.

3.6. Model Validation and Diagnostic Analysis
The performance of the RSM based model was evaluated through 
validation experiments and diagnostic plots. The objective was to 

assess how well the model could predict biomethane yield based on 
selected process variables: Pet coke (biomass) concentration, inoculum 
size, and magnetic Fe2O3 NPs dosage. Table 7 presents the experimental 
validation of the model using three sets of operating conditions 
predicted by the model development phase. The comparison between 
the predicted and actual biomethane yields demonstrates a high degree 
of agreement, indicating the model robustness and predictive accuracy. 
For example, in Run 6, where 8 g of biomass, 8 mL of inoculum size, 
and 40 mg of magnetic NPs were used, the actual Biomethane yield 
was 32.4%, closely aligning with the model’s prediction. Similarly, 
Run 16  (6  g biomass, 9.4  mL inoculum, and 25  mg NPs) produced 
24.3% biomethane yield and Run 17  (4  g biomass, 8  mL inoculum, 
and 40  mg NPs) resulted in 27.6% biomethane yield, both in close 
proximity to the corresponding model predictions. The low absolute 
error between predicted and experimental values across all runs confirms 
the model’s capability to accurately forecast biomethane output across 
the design space. These results validate the effectiveness of the second-
order polynomial equation in representing the experimental system.

This scatter plot [Figure 3a] evaluates the model predictive performance 
by comparing predicted and experimental values. The close clustering 
of data points along the 45° line (Y = X) signifies a high correlation 
and indicates that the model neither systematically overpredicts nor 
underpredicts the response. The near-linear fit validates the accuracy 
of the RSM model and reinforces the strength of the regression 
relationship. So also, the differences between observed and predicted 
values [Figure 3b], are plotted against the predicted values to assess 
model assumptions. A  random scatter of residuals around the zero 
line is evident with no discernible pattern, indicating that the model 
satisfies the assumption of homoscedasticity (constant variance) [33]. 
This further proves that the variance of the prediction errors is stable 
across the range of predicted values, supporting the reliability of 
the model. In addition, Figure 3c depicts how residuals behave with 
respect to the order of experimental runs. The distribution of residuals 
appears to be randomly scattered without any visible trends, cycles, or 
drift. This suggests that there are no lurking variables or time-related 
biases affecting the experimental runs. The consistency across run 
order confirms proper randomization of experimental trials and adds 
confidence in the validity of the experimental design.

3.7. 3D Surface and Contour Plot Analysis
The three-dimensional (3D) response surface plots and their 
corresponding contour plots provide significant insights into the 
interactive effects of key process parameters, pet coke concentration, 
inoculum size, and magnetic ionocide NP dosage on biomethane yield 
during AD. These visual tools are instrumental in identifying optimal 

Table 6: Coefficients of factors.

Intercept block 1 A B C

Biomethane 20.9354 −0.077083 4.06885 2.44631 5.92472

P‑value 0.0127 0.1097 0.0009

Table 7: Model validation results.

Run 
No.

Biomass 
(g/L)

Inoculum 
size% (v/v)

Magnetic Fe2O3 
NPs (mg/L)

Biomethane 
yield (%)

16 6 9.4 25 24.3

6 8 8 40 31.1

17 4 8 40 27.5
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operating conditions and understanding the non-linear behavior 
of the system under investigation [34]. The interaction between 
pet coke concentration and inoculum size [Figure  4X: a and b)] 
revealed a distinct curved response surface, indicating a significant 
interaction effect. Biomethane yield was observed to increase with 
moderate levels of pet coke and higher inoculum size. This trend 

can be attributed to the fact that low concentrations of pet coke may 
not provide sufficient carbon substrate to support microbial activity, 
whereas excessively high concentrations might inhibit digestion due 
to substrate overloading or an imbalance in the carbon-to-nitrogen 
(C/N) ratio. In contrast, increasing inoculum size enhanced microbial 
population density, thereby improving substrate degradation and gas 

Figure 4: 3D and contour surface interaction of pet coke and inoculum size (X: a and Y: a) and (Xb: a and Y: b).

Figure 3: (a) Graph of predicted and actual values, (b) Graph of predicted and residual values, (c) Graph of predicted and run values - experiment deviations.

a b c
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production. Similar behavior regarding this was previously reported 
by [31] using organic waste feedstock and nano magnetite particles as 
additives. The elliptical nature of the contour plot further confirmed 
a strong interaction between these two variables [35], implying that 
their effects on biomethane production are interdependent rather than 
additive.

A similar pattern was observed in the interaction between pet coke 
concentration and magnetic Fe2O3 NPs dosage [Figure 4Y: a and b]. The 
biomethane yield improved with moderate values of both parameters, 
suggesting a synergistic effect. Magnetic NPs, at optimal levels, 
likely stimulate microbial metabolism, enhance enzyme activity, or 
promote sludge flocculation, all of which contribute to better digestion 
efficiency. This agrees with previous findings of [36], who reported 
Magnetic NPs exert effects on microbial metabolism. However, high 
concentrations of NPs may exhibit inhibitory or toxic effects on 
microbial consortia as per previously reported studies [37], thereby 
reducing methane production. Again, the elliptical contours indicated 
a statistically significant interaction, reinforcing the importance of 
jointly optimizing these two variables.

Moreover, the third interaction, between inoculum size and magnetic 
Fe2O3 NPs [Figure  5], demonstrated a similar synergistic response. 
Maximum biomethane yield was achieved when both variables were 
maintained within a specific optimal range of (Inoculum size; 9.4% 
(v/v): Magnetic NPs 25mg/L). At low inoculum levels, the stimulatory 
effects of NPs could not be fully realized due to insufficient microbial 
biomass [38]. Conversely, high levels of both factors did not lead to 
further improvements and may have introduced inhibitory effects, 
possibly due to saturation or oxidative stress from excess NPs. The 
tightly curved contours reflect a narrow range within which both factors 
must be controlled to achieve peak performance [35]. Overall, these 
response surface analyses underscore the complexity of optimizing 
biomethane production, where multiple interacting variables must 
be carefully balanced. The non-linear and interactive nature of these 
effects validates the application of RSM and the use of a second-order 
polynomial model to accurately describe and predict system behavior.

3.8. GC Analysis of Produced Biomethane
The GC analysis of the biogas generated through AD of pet coke is 
presented in Table 8. Methane yield (wt%) was calculated from GC 
output normalized to total biogas volume using standard biomethane 

chromatogram as shown in Figure 6. The primary constituent of the 
produced biomethane was methane (CH4), which accounted for 55.86 
wt%, indicating a high energy potential of the biogas. This finding 
aligns closely results obtained by [39], who reported a biomethane 
yield ranging from 56.8% to 60.97% using Lime water and under acetic 
acid treatment. Methane is the main combustible component of biogas 
[40], and its proportion above 50% is generally considered adequate 
for most energy applications, including combustion for heat and 
electricity generation [41]. The second major component was carbon 
dioxide (CO2), constituting 18.62 wt%. CO2 is a non-combustible gas 

Table 8: Gas chromatography of produced Biomethane.

Element Composition (wt. %)

CH4 55.86

CO2 18.62

H2S 2.64

NH3 1.84

N2 3.35

O2 0.58

H2O 4.22

Figure 6: Standard chromatograph for the estimation of produced biomethane.

Figure 5: 3D and contour surface interaction of pet coke and Magnetic Iron oxide NPs(X: a and Y: a) and (Z: b and Y: b).

a b
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that dilutes the energy content of biogas but is a typical by product of 
AD [42]. The observed concentration is within the expected range, 
reflecting effective organic matter degradation and carbon conversion 
pathways. A notable presence of hydrogen sulfide (H2S) was detected 
at 2.64 wt%, which raises concerns due to its corrosive nature and 
toxicity. The concentration of H2S suggests that sulfur-containing 
compounds in the pet coke feedstock or microbial sulfate reduction 
pathways contributed to its formation. Pre-treatment of the substrate 
or post-treatment of the biogas (e.g., scrubbing, adsorption) may be 
necessary to reduce H2S to levels compliant with safety and emission 
standards [43]. Ammonia (NH3) was found at 1.84 wt%, which is 
relatively high and may have originated from nitrogenous compounds 
in the feedstock or microbial protein degradation. Elevated NH₃ 
can inhibit microbial activity in the digester and also contributes to 
odor problems, necessitating careful management [44]. The gas also 
contained minor quantities of nitrogen (N2) at 3.35 wt% and oxygen 
(O2) at 0.58 wt%. These likely originated from residual air during 
sample collection or incomplete anaerobic conditions. Water vapor 
(H₂O) constituted 4.22 wt%, typical of biogas under normal temperature 
and pressure conditions. The presence of moisture requires gas drying 
before usage, especially if the biogas is to be compressed or used in 
internal combustion engines [45].

4. CONCLUSION

This study successfully demonstrates the optimization of biomethane 
production from pet coke using AD enhanced by coal mine microbial 
inoculum and magnetic Fe2O3 NPs. The application of RSM enabled 
efficient exploration and identification of optimal operational 
conditions, with pet coke concentration and Fe2O3 NPs dosage 
emerging as statistically significant variables. The highest biomethane 
yield of 32.2% was observed with 8 g of pet coke, 8 mL of inoculum 
concentration, and 40  mg of Fe2O3 NPs. The linear model showed 
strong predictive performance and was validated through experimental 
trials, while GC confirmed the biogas energy-rich composition, 
particularly its high methane content. These findings establish pet coke 
as a feasible substrate for bioenergy generation, offering a sustainable 
pathway for its exploration. Future research should explore long-term 
operational stability, scale-up feasibility, and assess sulfur toxicity 
more comprehensively to understand its impact on microbial activity 
and biomethane yield.
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