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ABSTRACT 

Climatic changes affect various organisms, including plant species, becoming unfavorable for the environment 
and socioeconomic value, prompting an increase in activities related to plant resources conservation. The 
successful conservation of plant genetic resources depends on the proper identification and characterization 
of plant material. One of the notable developments in genetic conservation is the use of molecular markers for 
assessing the conservation and use of plant genetic resources. This review is devoted to the use of molecular 
marker techniques for genetic assessment of plant genetic variations. Development in these techniques provides 
smooth, reliable, and effortless ways for assessing known and unknown taxa, between and within species. These 
techniques provide a revelation to researchers on taxonomical and evolutionary questions which were not 
possible earlier. The polymerase chain reaction-based molecular markers give rise to various novel techniques 
due to the simplicity and high reproducibility of the methods. Examples including a combination of earlier 
techniques, such as restriction fragment length polymorphism, random amplification of polymorphic DNA, 
simple sequence repeat, intersimple sequence repeats, single nucleotide polymorphism, and amplified fragment 
length polymorphism, have been used for plant genetic variations and polymorphism studies. Progress in the 
advanced high-throughput sequencing techniques or next-generation sequencing technologies has been rapidly 
utilized to study genetic diversity broadly and to identify suitable genes and alleles rapidly. These techniques 
offer a practical resolution to the challenges in crop genomics. This review explains the recent advances in 
the molecular marker techniques, along with the advantages, uses, and limitations. Each technique differs in 
resolving the genetic variations and polymorphism in plant species.

1. INTRODUCTION 
Climatic change is one of the most considerable challenges in 
today’s world. In the recent decades, the rise in temperature and 
frequent floods, especially in the midlatitude, decreased global 
crop productivity [1]. Plant breeders have been provided with 
an excellent opportunity to develop advanced cultivars with 
better desirable characteristics by using plant genetic resources 
[2]. Genetic material can be conserved for years together, by 
capturing and storing the plant genetic diversity in the plant 
genetic resources format, such as gene banks, in the repository 
and DNA library. The exciting advances in molecular genetics 
in recent years have provided specialists involved in the plant 

resources conservation with novel techniques for reputable and 
straightforward identification of diversity of the plant species 
[3]. Insufficient knowledge about the present genetic variations 
in plants and how to use it is one of the crucial motivations for 
conservation. Proper use of plant genetic resources, as well as the 
selection of high productivity and resistant variations, requires 
accurate identification of their accession [4].

Today, the central question for researchers is the translation of 
natural genetic polymorphism (genotype) into the phenotype 
and how plants adapt to the environmental changes. The 1,001 
Genomes Project has addressed all these and related questions 
by providing high-resolution insight into global epigenetic and 
genetic polymorphisms in the model plant Arabidopsis thaliana 
[5] to help in the identification of specific genes with the help of 
genetic markers. The genetic marker concept is an adage, with 
Gregor Mendel in the late nineteenth century using a phenotype-
based marker in his experiments. The limitations of these 
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phenotypic-based markers subsequently led to the development of 
a DNA-based marker called a molecular marker. The molecular 
marker may or may not match with the genomic trait’s phenotypic 
expression, but it is stable and observable at all cell levels.

Additionally, the molecular markers are not confounded by 
ecological impacts. With the advent of DNA-based molecular 
markers, the practice of species identification technique has 
changed [6]. It has been developed into various techniques and 
used by numerous research groups throughout the world on a 
variety of plant species [7]. The main objective of this review is 
to provide the necessary information about the recently developed 
molecular marker technique and their application to genetic 
variability and variations in plant science for the conservation of 
plant resources.

2. ASSESSMENT OF GENETIC VARIATIONS IN PLANTS
Genetic diversity is one of the essential aspects of biological 
diversity that is significant for conservation programs [8,9]. The 
genetic variations in plants affect the higher level of biodiversity. 
The global population cannot adapt to and survive environmental 
changes without genetic diversity. Studies on the genetic variations 
are valuable for germplasm conservation, population, and variety 
identification and can identify alleles that might help the organism 
to cope with the changing environmental conditions [10]. Genetic 
variation assessment within and between plant populations 
is carried out using three techniques: (i) morphological, (ii) 
biochemical (allozymes), and (iii) DNA (molecular) marker 
techniques.

Morphological markers are simple and are based on visual 
inspection traits, such as growth habitat and flower color, and use 
inexpensive technologies, but they are time-consuming, labor-
intensive, and need an expanse of land area and plant population 
for field experiments, which make them more expensive than 
molecular assessment. Morphological markers are highly 
dependent on environmental factors and are susceptible to 
phenotypic plasticity [2].

Biochemical markers are the allelic forms of enzymes (isozymes) 
that can be distinguished by a procedure of electrophoresis and 
specific staining techniques. These are the simplest and least 
expensive techniques to identify genetic variations between and 
among populations. Allozymes are allelic variants of enzymes 
encoded by structural genes and are usually a result of gene 
duplication. The resolution of the allozyme technique is low 
because only protein-coding regions of DNA can be assessed and 
only a small proportion of the changes in those regions will cause 
an evident change in the mobility of the protein [11]. These are 
codominant in nature and require a small amount of biological 
material for detection. Nevertheless, there are only a small number 
of isozyme markers available, and therefore the resolution of 
variation using biochemical markers is small or limited.

Molecular markers are the most widely used genetic markers, 
consisting of a wide range of DNA molecular markers, which can 
be used for the analysis of genetic variations. These markers are 
inherited for both dominance and codominance and may contain 

both expressed and nonexpressed sequences. These markers have 
been used and are best suited to study the genetic variations within 
populations [12]. DNA sequence variations in and among the plant 
species have also been found using different molecular markers 
[13].

3. ANALYSES OF GENETIC DIVERSITY BY 
MOLECULAR MARKERS
The systematic analysis of available molecular genetic in 
germplasm would be effective in resolving the genomic 
differentiation patterns that could be revealed by morphological-
dependent taxonomic classifications. The molecular genetic 
variation data sets can render useful information on the allelic 
richness, population structure, and diversity parameters of 
germplasm, which can benefit the breeders to use genetic resources 
more effectively with fewer prebreeding activities for cultivar 
growth and improvement. Due to the quality and expeditiousness 
of data generated, germplasm characterization based on molecular 
markers has gained much importance nowadays [2].

A molecular marker is a DNA sequence on a locus in the genome 
of an organism at which the DNA genomic sequence varies among 
different individuals of a population. Molecular markers work 
by revealing variations (polymorphism) of the DNA sequences 
between different individuals in the population. These variations 
include insertions, deletions, point mutations, and translocations. 
An ideal biomarker has several preferred characteristics: (i) highly 
polymorphic and equally distributed throughout the genome; 
(ii) requires no previous knowledge of an organism’s genome; 
(iii) able to generate multiple, unique, and reliable markers and 
provide an adequate resolution; (iv) needs a small amount of start-
up material and is simple, quick, and inexpensive; (v) does not 
possess pleiotropic or epistatic links to distant phenotypes.

It is difficult to obtain a molecular marker that meets the ideal 
criteria. A perfect molecular marker which fulfills most of the 
characters can be recognized depending on the nature of the study. 
Relying on the need, changes, and modifications in the techniques 
leads to the advances and second-generation molecular markers. 
Molecular markers are classified into three main categories or 
generations due to timeline of advancement in the technologies 
used: (i) hybridization-based markers, such as restriction fragment 
length polymorphism (RFLP); (ii) polymerase chain reaction 
(PCR)-based markers: random amplification of polymorphic DNA 
(RAPD), amplified fragment length polymorphism (AFLP), and 
microsatellite or simple sequence repeat (SSR); and (iii) sequence-
based markers: single nucleotide polymorphism (SNP).

The DNA-based molecular markers are commonly in use in many 
areas of plant science research, such as for genetic and phylogeny 
studies, as well as for the ecological, evolutionary, and taxonomic 
studies. These techniques are well developed and their advantages 
and limitations have been well defined [14,15]. A comparison of 
the most commonly used molecular markers is shown in Table 1, 
and the concept of the markers’ application is shown in Figure 1. 
Analysis of samples over a shorter period is possible by recent 
advances of high-throughput sequencing technologies.
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3.1. Hybridization-Based Marker
Hybridization-based marker is named as such due to the process 
of identifying polymorphisms by hybridization of markers to the 
query DNA samples. In the beginning, RFLP had much power and 
was mostly used in the hybridization-based molecular marker. The 
RFLP marker was first used in 1975 to identify DNA polymorphism 
for genetic mapping of adenovirus serotype [16]. Later it was 
used for mapping human genes [17] and plant genomes [18]. In 
RFLP, variations in the characteristic pattern can be caused by any 
changes within a sequence of the DNA (point mutation), mutation 
between two sites (deletion and translocation), or mutation between 
the enzyme sites. RFLP is based on a restriction-hybridization 
technique where the DNA polymorphism of individuals can be 
detected by Southern blot hybridization of digested DNA to a 
chemically labeled DNA probe, resulting in the differential DNA 
fragment profile [4]. In some plants, such as wheat, however, low-

frequency RFLP polymorphisms were observed, which can be 
attributed to the polyploidy nature of wheat and its large genome 
size [19].

RFLP markers are polymorphic, replicable, and codominantly 
inherited. They can be easily determined in the homozygous 
or heterozygous state of individuals. However, there are some 
limitations of the RFLP, such as being time-consuming and 
expensive and that it uses radioactive reagents and requires a large 
quantity of higher quality start-up material (DNA), rendering it 
less critical and rarely used and it is becoming obsolete [20]. These 
limitations led to the development of a new type of molecular 
markers called PCR-based molecular markers.

3.2. Polymerase Chain Reaction-Based Markers
The advent of studies in the field of molecular markers led to the 
development of PCR-based genetic markers for various purposes. 

Table 1: Comparison of the five most widely used molecular markers in plants.
Molecular markers

RFLP RAPD AFLP Microsatellite SNP

Genomic abundance High High Very high Medium Medium

Degree of polymorphism Medium High Very High High High

Locus specificity Yes No No No Yes

Inheritance Codominant Dominant Dominant Codominant Codominant

Sequence information Yes No No No Yes

Reproducibility High Intermediate High High Medium

Quantity of DNA High Low Medium Low Low

Automation Low Medium Medium Medium Medium

Radioactive detection Yes No No No No

Cost per assay High Low Medium Medium Low

Figure 1: Schematic representation of various molecular markers for the determination of polymorphisms in two hypothetical individuals. Arrows depict the direction 
of DNA fragments amplified or hybridized. RF: RFLP polymorphisms. RE: restriction enzyme sites; subscript E and M denote EcoR1 and Mse1, respectively, in 

the AFLP. RA: RAPD primers. AF: AFLP preselective and selective primers. Colored double-pointed arrows represent polymorphisms based on different molecular 
marker techniques.
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PCR is a molecular biology technique used for amplifying a small 
amount of specific DNA region in vitro, enzymatically rather than 
in an organism itself. Generally, a short DNA strand up to 10 kb 
from a single or a part of a gene can be amplified using PCR. 
Several derivatives of PCR-based markers have been developed to 
suit the needs of various types of study.

3.2.1. Random amplified polymorphic DNA
The RAPD was the most straightforward PCR-based technique 
involved in the genetic variation analysis. The technique was 
developed independently by two different laboratories [21,22] 
and was known as RAPD and AP-PCR (arbitrary primed PCR), 
respectively. RAPD was the first to amplify the gene from species 
without DNA sequence information. This technique is based on 
the amplification of the random segments of the genomic DNA 
with the single primers of the arbitrary new sequence. The basic 
techniques of RAPD involve the following: (i) highly purified 
DNA; (ii) addition of single random primers; (iii) PCR; (iv) 
fragment separation by gel electrophoresis; (v) visualization of 
RAPD–PCR fragments; and (vi) fragment size determination, in 
comparison with a known molecular marker with the help of the 
gel analysis software.

RAPD was used to study genetic variations between plants 
of the same species. Genetic variations among populations of 
Capparis have been studied [23,24]. In the latter study, a total of 
152 reproducible RAPD bands across the 36 individuals were 
amplified using 25 random primers. The result showed that the 
Farasan population had the highest level of genetic diversity 
(24.3%) and two populations [Khor Assos (5.9%) and Taif (4.6%)] 
had the lowest genetic diversity [23]. In another study, the genetic 

variations of five cultivars of Trigonella have been studied with 11 
random primers, showing a total of 80 bands generated, of which 
66 were polymorphic with a polymorphism of 82.50% [25]. 

Genetic variation of Vigna umbellata was studied using the RAPD 
marker by primer OPBB1 (Fig. 2). The primer generated 987 
bands, of which 719 were polymorphic with 70% polymorphism 
[26]. Helicanthus elastica (mango mistletoe) showed molecular 
differences in genomic DNA while growing on five different host 
trees when analyzed using four random RAPD primers [27]. RAPD 
was used to evaluate the genetic diversity among 20 Poincianella 
pyramidalis used in seed collection and conservation [28]. RAPD 
was also used together with intersimple sequence repeats (ISSRs) 
to study the genetic diversity of 18 Iranian populations of Nigella 
sativa, showing that these molecular markers can be useful for 
identifying and classifying plant species [29]. RAPD and SSR 
markers were also used to assess the genetic diversity of finger 
millet (Eleusine coracana), showing these molecular markers 
techniques are suitable for various plants, as well as for other 
organisms such as insects [30,31].

RAPD has been widely used because it is simple and cost-efficient 
and requires a small amount of DNA and no DNA probe and 
sequence information for primer designing. It is typically observed 
that, for assessment of genetic diversity, RAPD is usually used 
along with other molecular marker techniques [32]. However, 
there are few limitations of the RAPD marker, such as issues of 
less reproducibility and dominant inheritance. There is always a 
mismatch between primers in RAPD analysis. When the analysis 
using RAPD was conducted simultaneously with the other 
molecular marker methods, the other more advanced methods 

Figure 2: RAPD marker profile of 10 landraces of V. umbellata generated by primer OPBB1 (Reprinted with permission [27]).
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showed better genetic relationships between the analyzed samples 
[33].

3.2.2. Amplified fragment length polymorphism
Another PCR-based technique used to detect polymorphism is 
AFLP, which is based on the selective amplification by PCR of 
restriction fragments from a fully digested genomic DNA [34]. 
AFLP can be used to study genetic variations and is highly 
reproducible as it combines the reliability of RFLP with the 
sensitivity of PCR. This technique involves the following: (i) pure 
DNA from the samples to be analyzed; (ii) digestion of DNA with 
two restriction endonucleases mixture usually with a six-base-
pair recognition site, such as EcoR1, and with a four-base-pair 
recognition site, such as Mse1; (iii) enzyme adapter ligation to the 
digested DNA; (iv) preamplification of restriction fragments with 
preselective primers with one extra base EcoR1+1 and Mse1+1; 
(v) selective amplification with fluorescently labeled primers with 
three extra bases EcoR1+3 and Mse1+3 (forward EcoR1+3 primer 
fluorescent labeled and reverse  Mse1+1 unlabeled); and (vi) 
electrophoresis detection and fragment analysis. AFLP fragments 
are visualized either on an agarose gel with EtBr staining or on 
denaturing polyacrylamide gels with silver staining or automatic 
DNA sequencers.

This technique is used to study the genetic diversity and polygenetic 
relationship not only between different species but also between 
closely related genotypes [35]. AFLP generates fragments of any 
genomic DNA without any prior knowledge of sequences and 
any sources. This molecular technique is still prevalently being 
used for plant genetic study until now. The genetic diversity 
assessment of Elymus tangutorum was studied using 14 primer 
combinations which show an average polymorphism of 91% per 
primer combination [36]. Genetic variations of 177 accessions of 
Panicum turgidum Forssk, representing 10 populations, showed 
that 100% polymorphism was analyzed using AFLP markers 
[37]. Genetic diversity within the Norwegian Rhodiola rosea 
germplasm collection was analyzed using five AFLP primers, 
which shows about 80% of polymorphism among the clones [38]. 

The genetic and morphological variations in Metroxylon sagu have 
been studied using AFLP, which showed a significant correlation 
between genetic and geographical distances [39]. Another example 
of the AFLP marker profile in M. sagu produced by seven pairs of 
EcoR1 and Mse1 primers from our research is shown in Figure 3. The 
genetic diversity of 11 cultivars of soybean from 18 AFLP primer 
combinations has been reported with 43% polymorphism [40]. 
AFLP markers have been used to determine the genetic diversity for 
the conservation of endangered species, such as Australian hidden 
beard heath (Leucopogon obtectus), spring pasqueflower (Pulsatilla 
vernalis) in Europe, and Chascolytrum bulbosum, a grass species 
that is native to Latin America [41–45]; germplasm collection [46]; 
and the diversity of plant-related pathogens [47]. 

AFLP analysis is more efficient than RAPD and is highly 
reproducible, reliable, and polymorphic. It requires no prior 
sequence information or probe generation and can generate 
multiple fragments all over the whole genome to check 
polymorphisms as compared to RAPD, RFLP, and microsatellite. 

Besides, compared to the other molecular marker techniques, the 
AFLP is preferred if the researcher’s main criteria is a technique 
with the most discriminatory power [48], and the data can be 
stored in a database like AmpliBASE MT [46]. AFLP markers 
sometimes display dominance and are labor-intensive and require 
several steps to produce results. 

3.2.3 Microsatellites
Microsatellites or SSRs are polymorphic loci consisting of di-, 
tri-, or tetranucleotide tandem repeats present in DNA sequences 
and comprise primary short motif genes between one- and six-
base-pair lengths [49]. It is believed that the variations in the 
number of tandemly repeated units are mainly due to spilt-strands, 
miss pairing during DNA replication, repair, and recombination 
[50]. The amplification of microsatellites for identification is 
conducted using the unique sequence of flanking regions as 
primers. Therefore, one single pair of PCR primer can produce 
different sized products of different lengths in every end in the 
same species. The PCR product is separated either by capillary or 
slab gel electrophoresis in an automated sequence.

The SSR technique has been used to start conserving endangered 
species, such as Calystegia soldanella [51], Tricyrtis ishiiana [52], 
Galium catalinense subspecies acrispum [53], and Primula reinni 
[54]. In another example, the genetic diversity of Pennisetum 
glaucum hybrids and their parental line was studied using 55 
microsatellite markers. Out of 55 markers, 37 were amplified, 
producing 162 alleles with the highest polymorphic information 
content (PIC) of 0.837 [55]. Microsatellite markers have been used 
to study quantitative trait locus (QTL) mapping in A. thaliana and 
have been proven as efficient to control seed stock or cross between 
accession [56] (Fig. 4).

Recent advances employing new SSR markers are primers that 
were developed from apple and pear to study the genetic variations 
and relationship of hawthorn (Crataegus spp.) [57]. In another 
study, to develop new SSR markers for lentil, an enriched genomic 
library for adenine-cytosine (AC) and adenine-guanine (AG) 
repeats were constructed from the Lens culinaris cv Kafkas [58]. 
A candidate gene approach has been used to develop and identify 
the SSR markers of aquaporin genes for drought stress in plants 

Figure 3: AFLP marker profile of M. sagu generated by seven primer pairs of 
EcoR1 and MSe1.
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and can be used in studying the level of gene expression of these 
genes in new species [59]. The expressed sequence tag (EST)_
SSR markers were developed to assess the genetic diversity of 
27 accessions of erect milkvetch (Astragalus adsurgens) using 51 
random primer pairs, in which by using these newly developed 
markers, wild milkvetch accession showed higher genetic diversity 
[60]. Thirty-six SSR markers were developed for Ephedra sinica 
by transcriptome database mining for genetic monitoring [61].

While the SSR polymorphisms are detected by a pair of primers 
that are unique to one locus in the genome and the primer pair 
amplifying the repeated portion of the microsatellites, another 
variant or subset of the SSR technique employs only a single primer 
for the study of polymorphisms. The technique is known as ISSR. 
Using the ISSR, one primer is used to amplify fragments between 
two identical but inversely oriented neighboring microsatellites. 
The ISSR is a dominant molecular marker, whereas the SSR 
markers are codominant; thus, they are able to detect both alleles 
in a heterozygous state. ISSR molecular markers are considered 
to have high marker efficiency, and SSR markers had extensive 
polymorphisms [62].

Microsatellites are considered to be a popular genetic marker. Unlike 
AFLP and RAPD, microsatellite markers show codominance. It is 
highly polymorphic, hypervariable, and is distributed throughout 
the genome and has a higher mutation rate than standard. However, 
microsatellite markers have few disadvantages as they require 
prior knowledge of the DNA sequence of the flanking region [63] 
and are not suitable for use across species [64]. The development 
of correctly functioning primers is expensive, time-consuming, 
and low throughput due to the difficulty for automation and data 
management [65].

3.3 Sequencing-Based Marker

3.3.1. Single nucleotide polymorphism
The SNP is a common type of variation in a DNA sequence 
among individuals of the same species. It has recently emerged 
as a new generation sequencing-based molecular marker, which 
can efficiently distinguish between homozygous and heterozygous 
alleles. The power in the SNP comes from the large number of 
loci that can be evaluated [66]. SNP provides the ultimate and 
reliable form of molecular markers as a single nucleotide base 
is the smallest unit of inheritance and can, therefore, provide 
an excellent marker density. SNPs are evolutionary consumed, 
which makes them less susceptible to the matter of homoplasy 
[67]. SNPs are suitable for high-performance automation, which 
allows effective genotyping of a greater number of samples [68]. 
The underlying protocol of SNP includes (i) sample reaction 
preparation with primers and templates, (ii) SNaPshot reactions 
using PCR, (iii) posttreatment of the products, and (iv) automated 
electrophoresis of samples and analysis of data.

In plants, SNPs can be designed from ESTs [69,70] and single-
stranded pyrosequencing [71]. An SNP is used to construct the 
ultrahigh density genetic maps in plants and is used to determine 
genetic variations, especially in species with limited genetic 
diversity. The intra- and interpopulation diversities of broad beans 
(Vicia faba L.) were evaluated using a set of 768 SNP markers, of 
which 657 were amplified successfully and showed polymorphism 
[72]. The population genetic structure of castor beans (Ricinus 
communis) from genome-wide comparison was determined using 
SNPs, which shows the mixing of genotypes with low genetic 
variations, leading to the least worldwide geographic structuring 

Figure 4: Polymorphism obtained by three SSR markers is shown for 30 accessions of A. thaliana.  
(A) BSAT.024; (B) MSAT3.1; and (C) MSAT%.22 (Reprinted with permission [57]).
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of castor bean population [66]. In another study employing SNPs, 
352 accessions of lentils (L. culinaris) originating from 54 diverse 
countries were reported to estimate the genetic diversity and genetic 
structure using 1,194 polymorphic SNPs [73]. SNPs markers were 
also used for genetic assessment and population structure analysis 
of 343 genotypes of spinach, showing that the genetic background 
in improved commercial F1 hybrids and several selected cultivars 
had a differently structured population from the United States 
Department of Agriculture (USDA) germplasm collection, which 
originated from different countries [74].

3.3.2. Next-generation sequencing (NGS)
The traditional DNA sequencing technologies could not meet 
the demand for in-depth sequencing information required in 
complicated genomic research. The advent of DNA sequencing 
technology has advanced the field of molecular biology [75]. NGS 
or second-generation sequencing technique has revolutionized 
genomic research by drastically decreasing the expenses and 
time requirement for sequencing using conventional sequencing 
methods based on the Sanger method (first-generation sequencing). 
NGS also revolutionized the study of variations among individuals 
in a population [2]. The NGS, followed by the third-generation 
sequencing approach, filled the gap of complicated genomic studies 
and made DNA sequencing partially crucial to the conservation 
biology [76]. The NGS and third-generation sequencing 
technologies available at present are 454 FLX (Roche), Illumina 
(formerly Solexa), supported oligonucleotides ligation and 
detection (SOLiD) (ThermoFisher), BGISEQ (BGI Genomics), 
single-molecule sequencing (Helicos), single-molecule real-time 
(SMRT) sequencing (Pacific Bioscience), PacBio RS II (Pacific 
Bioscience), and MinION (Oxford Nanopore) (Table 2).

The 454 FLX was the first NGS platform available, developed by 
454 Life Science and is based on a pyrosequencing-based method 
that uses PCR to attain high-throughput parallel sequencing [77]. 

Meanwhile, the Illumina sequence platform was commercialized in 
2006 and is based on a sequence-by-synthesis approach involving 
a basic library construction method with reversible fluorescence 
termination chemistry in the sequencing reaction, resulting in 35 
bp reads [78]. The SOLiD system is another sequencing approach, 
which uses the ligation-based sequencing technique. The SOLiD4 
platform has its origins in converting a cheap epifluorescence 
microscope as an automated nonelectrophoretic DNA sequencer 
[79]. A large set of SNPs was identified in a single walnut cultivar 
covering 98% of the physical map of the walnut genome when 
sequencing was conducted using the SOLiD4 platform [80].

A further advancement in the NGS technology resulted in a longer 
read high-throughput sequencing, known as third-generation 
sequencing. One example is Helicos true-single-molecule 
sequencing (tSMS), an exclusively unique DNA sequencing and 
genetic analysis approach, which is independent of PCR [81]. 
It offers a significant advantage over both traditional and NGS 
techniques. Helicos scientists have been able to increase the sample 
throughput of the system by five times (from 50 samples per run to 
250 samples using the Helicos DNA Barcoding protocol, without 
losing precision or representational bias) [82].

The first commercial third-generation SMRT sequencer was 
PacBio RS II from Pacific Bioscience available in 2011 [83]. The 
data generated by the PacBio RS II have much better read lengths 
but are moderately lesser accurate than the second-generation 
platforms. To advance the read accuracy using this sequencing 
platform, a hybrid genome assembly approach called the “PacBio 
corrected Reads” algorithm was developed [84]. This algorithm 
of the hybrid genome assembly is based on the computational 
construction of precise longer consensus sequence by mapping 
high-accuracy second-generation NGS short reads to longer PacBio 
reads [85]. PacBio is preferred for polymorphism studies because 
of its long read length of over 10 kb on average, with some reads 
possibly reaching up to 60 kb. However, because of the PacBio 
high rates of random error in its single-pass reads, it is usually 
combined with another platform, such as Illumina [86]. This 
platform combination has also been used for SNPs and insertions/
deletions (InDels) study in determining genetic variations between 
two varieties of the tea plant (Camellia sinensis) [87].

The MinION Nanopore sequencer is another new platform that 
can produce long sequencing reads on a palm-sized device that 
can be plugged into the USB port of a laptop [88–90]. Nanopore 
DNA sequencing is now an established sequencing platform that 
routinely achieves a read length of 50 kb and more and single-strand 
read accuracies of better than 92% [91]. The long read sequencing 
(LRS) systems of nanopore were used to assess low-coverage 
nanopore LRS for SNP genotyping in doubled haploid canola, 
showing a significant increase in the read length and improved 
alignment to the genome resulting in a more even representation 
of the genome [92]. Another option of high-throughput sequencing 
is the BGI Seq Complete Genomics nanoball technology by 
BGI Genomics. This method utilizes the amplification of small 
fragments of genomic DNA into DNA nanoballs by using the 
rolling circle replication method. The DNA sequencing using the 
BGI platform is comparable to the Illumina for use to generate 
high-quality data in DNA-related NGS applications. Using the 

Table 2. Next-generation sequencing platforms currently available.
Sequencing technology Read length (bp) Read number

NGS technology

454; 454 FLX  
(Roche > life sciences)

400–600 1 Mb

SOLiD4  
(Applied biosystems > Thermofisher)

2 × 150 160 Gb

Illumina  
-MiniSeq 
-MiSeq 
-HiSeq 4,000

 
2 × 150 
2 × 300 
2 × 150

 
7.5 Gb 
15 Gb 

1,500 Gb

-NextSeq 2,000 
-NovaSeq 6,000 
(Solexa > Illumina)

2 × 150 
2 × 250

300 Gb 
6,000 Gb

BGISEQ-500 
DNBSEQ-G50 
DNBSEQ-G400 
(BGI genomics)

2 × 150 
2 × 150 
1 × 400

90 Gb 
150 Gb 

1,440 Gb

Third-generation sequencing technology

SMRT sequel II PacBio 30 kb 20 Gb

Oxford nanopore MinION 5–200 kb 30 Gb

Helicos tSMS 
(Helicos bioscience > SeqLL)

35 bp 25 Gb

The read lengths and read numbers are obtained from the respective company websites.
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BGISEQ-500 approaches (PE100 and PE75), more SNP events 
were identified in Arabidopsis compared to the analysis using 
Illumina HiSeq4000 [93]. 

NGS usually presents shorter read lengths, higher coverage, and 
different error profiles when compared to traditional sequencing 
data. Different kinds of software were specifically designed to cope 
with the NGS data. Many studies have reviewed the new software 
tools, methodology, advantages, and disadvantages of each NGS 
technology [94–96]. Since there are many different platforms of 
choice for conducting the sequencing, whether to elucidate the 
genome of any specific species or to further analyze the previously 
sequenced plant samples, for example, determination of species 
variability, the decision of which platform to use is usually decided 
by the number of reads and cost [94,97]. 

Comparing the preference and popularity of the molecular 
marker technologies that are now available in the market, the 
sequencing-based technologies are considered to be the preferred 
methods among researchers carrying out polymorphic and genetic 
studies. The current publication data showed that among the 
available technologies from the first-generation markers until the 
current third-generation markers based on DNA sequencing, all 
technologies are still being used and reported in prominent journal 
publications (Fig. 5). 

The first-generation type of markers is still being employed 
now in 2020, albeit with reduced popularity. Based on the data 

obtained through the search engine lens.org [98,99], RFLP is still 
being used for polymorphic analysis, with the number decreasing 
from approximately 2,800 publications in 2009 to 1,200 in 2019, 
a 57% reduction in the number of publications in 10 years. The 
earlier second-generation type of markers, such as RAPD and 
AFLP, is less preferred with the number reduced to 70% over the 
same 10-year period. The minisatellites and microsatellites are the 
preferred second-generation molecular markers techniques among 
researchers, with the number of publications at almost a constant 
of 5,000 journal publications annually since 2009–2016, and 
which slightly reduced to around 3,300 in 2019. The preference 
for minisatellites and microsatellites is due to the more detailed 
information and accurate data sets of variations and polymorphisms 
that can be obtained using these methods compared to the earlier 
methods.

The current and most preferred method for studying polymorphisms 
is third-generation molecular marker analysis, employing the 
sequencing methods. The trend for using this sequencing approach 
has continuously been increasing from 2009, with both third-
generation methods using SNPs and DNA sequence data, resulting 
in more than 9,000 publications in 2009 to the highest of 21,000 
publications in 2015. From this trend, it can be observed that the 
SNPs analysis is the most preferred method for molecular markers 
analysis, most likely due to the advancement of technology for 
sample extraction, as well as the considerable reduction of the cost 
for conducting the analysis [100].

Figure 5: The number of publications using various molecular marker techniques for polymorphism studies from 2009 to 2019.
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4. CONCLUSION
This review summarizes some essential types of molecular 
markers that are developed among others to solve our major global 
issues of assessing plant responses to climate change. Molecular 
markers change the additional difficult phenotypical markers when 
investigating plant diversity that was used during the infancy of 
genetic research. The use of PCR-based DNA markers reviewed 
here shows that these markers have replaced hybridization-based 
markers, and this approach is increasingly widely used due to its 
simplicity and efficiency. These markers are used to determine 
the genetic relationships between closely related plant species. 
It also offers an insight into the mechanisms of somaclonal 
variation. Improvements in the DNA marker technique provide 
new possibilities of identification and analysis of commercially 
significant genes determining valuable, qualitative, and 
quantitative characters of plants. These markers are undoubtedly 
valuable tools for population genetics and plant breeding issue.

With the use of high-throughput molecular marker technologies 
ensuring speed and quality of data generated, it is possible to 
characterize a larger number of germplasms with limited time and 
resources. NGS reduced the cost and time required for sequencing 
the whole genome. Different types of molecular markers were 
developed and used for studying genetic variation and for the 
construction of genetic and physical maps. It is crucial to maintain, 
assess, and evaluate genetic diversity through these molecular 
marker techniques, as it provides a repository of adaptability 
to the environment and other changes as well. Since molecular 
genetics is a fast-growing field in science, new molecular marker 
techniques are likely to be developed further to overcome current 
limitations and provide advantages to researchers.
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