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The rise in environmental pollution over the past few decades due to rapid industrialization and unsafe agricultural
practices has become a major challenge. The presence of toxic pollutants such as nuclear wastes, heavy metals,
pesticides, and hydrocarbons has been languishing the environment as well as the human health. Bioremediation
using microbial communities is emerging as an incredible, eco-friendly, and cost-effective approach to ameliorate
the adverse effects of toxic pollutants. Microbes possess astonishing metabolic capabilities to alter most forms of
organic material and can survive in extreme environmental conditions which make them attractive candidate for the
bioremediation. Microbes are the treasure houses for environmental cleaning and recovering of contaminated soil
and they have been reported from diverse environmental conditions including hot, cold, drought, and saline. Different
groups of bioremediating microbes have reported from diverse conditions, that is, bacteria, fungi including yeast, and
algae. Microbes belonging to genera Alcaligenes, Aspergillus, Bacillus, Flavobacterium, Ganoderma, Methosinus,
Nocardia, Phormidium, Pseudomonas, Rhizopus, Rhodococcus, and Stereum have been reported as potential
and efficient bioremediators for the degradation of different pollutants of the environment such as xenobiotics,
heavy metals, hydrocarbons, and paper and pulp effluent. The present review focuses on microbial diversity in
bioremediation, techniques applied in bioremediation, bioremediation of different environmental pollutants, and how
bioremediation processes could be monitored.

1. INTRODUCTION

accumulation [3]. Polyaromatic hydrocarbons (PAHs) are known for
their mutagenic and carcinogenic properties [4]. The toxic contaminants

The quality of life on Earth is linked inextricably to the overall quality
of the environment. The increasing civilization, urbanization, and
advancements in the industrial sector have resulted in generation of
wastes and their dumping in the environment. It has been estimated that
about 1000 new chemicals are synthesized annually. More than 450
million kilograms of toxins are released globally into air and water in
accordance to the third world network reports [1]. The pulp and paper
industry is known to be the sixth largest polluter of the environment [2].
Heavy metal pollution is another significant threat to the public and
environmental health for its toxicity, non-biodegradability, and bio-
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leading to ecological imbalance are of global concern [5]. Microbial
biotechnology is a rapidly growing and emerging field with diverse
applications in dealing with the environmental issues. The application
of the microbes for bioremediation is a versatile technology with
high stability, economical, eco-friendly, lack of interference with
the ecology of the ecosystem, and more public acceptance [6].
Environmental cleaning through bioremediation is a apt substitute to
the physicochemical approaches, which are rather environmentally
disparaging and can be the cause of the secondary pollution.
Bioremediation could be utilized in cleanup of contaminated sites such
as water, soils, sludge, and waste streams [7,8].

Bioremediation has been even approved by the US Environmental
Protection Agency (USEPA) as an effective environmentally sound
technique for revitalization of the contaminated environment and
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promotion of sustainable development [9]. Microbes belonging
to genera Alcaligenes, Aspergillus, Bacillus, Flavobacterium,
Ganoderma, Methosinus, Nocardia, Phormidium, Pseudomonas,
Rhizopus, Rhodococcus, and Stereum have been reported to have a
potential role in bioremediation [10-12]. Bioremediation is not new
to human race but surely the new approaches that stem from advances
in molecular biology and process engineering are emerging [13].
With the advancements of genetic engineering techniques, genetically
modified organisms can be generated and utilized to reduce the burden
of toxic compounds from the environment. Thus, implanting these
methods and increasing their efficiency will lead to economic as well
as social benefits with reduced risks of diseases and costs being spent
on management of these wastes, and achievement of more ecological
stability and greener environment [ 14].

2. BIODIVERSITY OF BIOREMEDIATING MICROBES

The enticing process, bioremediation is one of the processes that help
in detoxify environmental pollutants using diverse group of microbes
including fungi, yeast, and bacteria. Microorganisms are considered
as to be the outstanding creatures for the detoxification of pollutants
as it is cheap, simple, and eco-friendly clean-up method [15,16]. To
hold the assurance for detoxification of environmental contaminants,
diverse group of microbes are explored around the globe from
different locations and environmental conditions [17]. In a report,
phenol degrading yeasts, namely, Candida boidinii, Pichia holstii,
P. membranifaciens, and Saccharomyces cerevisiae, were isolated from
the olive mill wastewaters [18]. Zhang et al. [19] reported petroleum
degrading bacterium Bacillus sp. from the oil contaminated soil. In
another report, white rot fungi, Trametes versicolor was reported as a
bioremediating agent of polycyclic aromatic hydrocarbons (PAH) [20].
In a report by Janbandhu, Fulekar [21], three bacterial species, namely,
Achromobacter insolitus, Bacillus cereus, and Sphingobacterium
sp., isolated from petrochemical refinery field were reported for
remediating PAHs.

In a report, diversity of bioremediating bacterial isolates, that is,
Bacillus megaterium, B. cibi, B. cereus, Pseudomonas aeruginosa,
and Stenotrophomonas acidaminiphila from oily sludge contaminated
soil was reported. These strains were reported for having capability of
degrading aliphatic and aromatic compounds [22]. Syakti et al. [23]
reported bioremediating potential bacterial isolated from the mangroves
growing in hydrocarbons contaminated soil and they were identified as
Bacillus aquimaris, B. megaterium, and B. pumilus, Flexibacteraceae
bacterium, Halobacillus trueperi, and Rhodobacteraceae bacterium.
In another report, crude oil degrading microbes were reported and they
were reported for belonging to genera Achromobacter, Alcaligenes,
Bacillus, Brevibacillus, Delftia, Lysinibacillus, Paenibacillus,
Pseudomonas, and Stenotrophomonas [24].

In an investigation, Pseudomonas sp. isolated from the petroleum
refinery soil and the strains were reported for degrading the
hydrocarbons [25]. Godoy et al. [26] isolated fungal species from PAH
contaminated soil which were having capability of bioremediating
xenobiotics. The fungal isolates were identified as Fomes sp.
and Scopulariopsis brevicaulis. In an investigation, diversity of
hydrocarbons degrading bacterial strains was reported from petroleum
refinery waste and they belong to genera Bacillus, Burkholderia,
Enterobacter, Kocuria, Pandoraea, and Pseudomonas [27]. In another
report, Stenotrophomonas was reported for bioremediating xenobiotics
as it was having capability resist antibiotics ofloxacin, streptomycin,
rifampicillin, erythromycin, ampicillin, and clindamycin. This strain

was also reported for degrading the heavy metals including arsenic,
mercury, copper, nickel, and lead [28].

The microbial community belonging to genera Shinella,
Microbacterium, Micrococcus, and Bacillus were reported for
bioremediating heavy metal (cadmium, chromium, cobalt, nickel, and
zinc) environmental pollutants [29]. In another report, Pseudomonas
nitroreducens and Ochrobactrum sp. were reported as a pesticides
degrading agent [30]. Ali et al. [31] have reported yeast cultures,
namely, Barnettozyma californica, Sterigmatomyces halophilus, and
Yarrowia sp., for having a capability of bioremediating textile Red
HE3B dye.

3. BIOREMEDIATION OF DIVERSE CONTAMINANTS

3.1. Bioremediation of Paper and Pulp Effluent

Pulp and paper industry is one of the important industrial sectors
simultaneously being the source of the toxic pollutants [32]. The
toxic effluent released from the paper and pulp industries has adverse
environmental impact as it contains high content of BOD (biological
oxygen demand) and COD (chemical oxygen demand), total dissolved
solids, suspended solids, color, organic acids, phosphorus, sulfur
compounds, and toxic chlorophenols [33]. This environmental
pollutant also affects the health of the humans working in the paper
and pulp industries as it may cause headache, vomiting, nausea,
diarrhea, and eye irritation. In addition, flora and fauna of land as
well as aquatic are also affected by the pollutant [34]. Moreover, the
effluent has also declined the quantity and quality of the water. To
cope with this effluent problem, in the past decade, several projects
and technologies have been implemented and upgraded, respectively.
Over the many years, the wastewater generated from the industry was
treated with physical methods such as adsorption, microfiltration, and
photoionization; and chemical methods such as coagulation, oxidation,
ozonation, and sedimentation [35]. The physical and chemical methods
of the treatment of the effluent have shown to improve the quality of
the effluent by enables to treat it completely.

Further, the effluent was treated with the biological process in which
the wastewater is treated with microbes which have a capability to
produce ligninolytic enzymes which helps in the bioremediation
without causing any harmful effect on the environment. These
methods have adventurous over the physical and chemical method as
it is cost effective, and appropriately reduced the BOD and COD in
the wastewater. In the detoxification of the paper and pulp effluent,
several types of the microbes are being recognized including bacteria,
fungi, and algae [36]. A study on the secondary sludge of pulp and
paper mill sample, pentachlorophenol (PCP) mineralizing bacterium,
Pseudomonas stutzeri was reported for the having a capability of
degrading the stoichiometric compounds which removes 66.8% of
PCP from paper and pulp effluent and bioremediate the effluent [37].
In another report, a bacterium, Enterobacter sp., was isolated from the
tannic acid enriched soil was reported for the bioremediation of pulp
and paper mill effluents by reducing the color up to 82% and lignin
content up to 73%. Moreover, the effluent has also reported for the
reducing of the BOD and COD content in their 16 h of retention time
in batch culture [38].

In another investigation, Pseudomonas putida MTCC 10510 was
reported for the decolorization of up to 39.72-48.2% and chloride ions
by 80.1-83.5% in 36 h in a paper and pulp mill effluent [39]. Chandra
and Singh [40] have reported three ligninolytic enzyme activity
exhibiting bacterial strains, namely, Pseudochrobactrum glaciale,



Kour, et al.: Microbe-mediated bioremediation 2022;10(Suppl 2):6-24 8

Providencia rettgeri, and Pantoea sp., which help in the reduction of
color, COD, and BOD in the paper and pulp mill effluent by 96.02%,
91%, and 92.59%, respectively, in 219 h of the incubation period.
In a report, a laccase enzyme-producing bacterium, Pseudomonas
putida was reported for decolorizing the industrial effluent by 16-86%
within 24 h of incubation [41]. Similarly, laccase enzyme-producing
bacterium, Paenibacillus sp., was reported effectively reducing color,
lignin, phenol, BOD, and COD by 68%, 54%, 86%, 83%, and 78%,
respectively, in 144 h of incubation [42]. In another report, ligninolytic
bacterium, Brevibacillus agri, isolated from the paper and pulp mill
sludge was reported for bioremediating 69%, 47%, and 37% of COD,
color, and lignin, respectively, in the mill effluent [43].

In a report, ligninolytic bacterium, namely, Serratia liquefaciens, was
reported for detoxifying the color, lignin, COD, and phenols by 72%,
58%, 85%, and 95% within the 144 h of the inoculation at temperature,
pH, and speed of 30°C, 7.6, and 120 rpm, respectively [44]. Abhishek
et al. [45] isolated Citrobacter freundii and Serratia marcescens from
wastewater sludge which were found to decolorize color by 64% and
60%, respectively, and, in combination, color was 87% decolorized
in paper pulp wastewater. Bacterial isolates C. freundii and
S. marcescens was also reported for removing 76% and 61% of total
organic carbon (TOC), 80% and 67% of COD, and 87% and 65% of
lignin, respectively. In another report, Hooda et al. [46] have reported
Brevibacillus parabrevis for detoxification of color, chemical oxygen
demand, lignin content from kraft paper mill effluent up to 59%, 62%,
and 53.8%, respectively, at 37°C after 5 days of inoculation.

In a report, bacterial isolate, Planococcus sp. isolated from
wastewater was reported for the bioremediating paper mill effluent
in fluidized bed reactor. The bacterial isolates were reported for
reducing the concentration of phenol, lignin, color, and COD from
the effluent up to 96%, 74%, 81%, and 85%, respectively, with the
60 h of incubation [47]. Sonkar et al. [48] reported Bacillus sp. for
degradation of decolorization of the 100% filter sterilized effluent in a
batch treatment. This strain was reported for degrading 82.22, 89.50,
93.33, and 73.01% of TOC, COD, BOD, and color, respectively, after
72 h of treatment. In an investigation, paper mill sludge was reported
to be detoxified by bacterial consortium of Bacillus sp., Pseudomonas
sp., and Pseudomonas stutzeri at the 37°C temperature, 150 rpm
speed, and 7.0 + 0.2 pH. The bacterial consortium was reported
for degrading the TOC, COD, BOD, lignin, total phenol, nitrogen,
phosphate, absorbable organic halides, and color [49]. In another
report, thermophilic ligninolytic Serratia sp. was reported for the
degradation of papermaking black liquor. This strain was reported for
the degrading the color, lignin, phenol, BOD, and COD up to 80%,
60%, 95%, 80%, and 80%, respectively [50] [Table 1].

3.2. Bioremediation of Heavy Metals

Heavy metals, the elements having greater density, are widespread
environmental pollution which has generated hype in recent years due
to associated health risks. The major cause of this widespread pollutant
is industries including iron and steel, electroplating, electrolysis,
energy and fuel, fertilizer, and pesticides producing industries. These
industries release of heavy metals such as uranium, mercury, lead,
chromium, cadmium, and arsenic that are poisonous to land as well as
aquatic flora and fauna. Heavy metals are also known to threaten the
life of humans by causing skin irritation, breathing problem, weakness,
abdominal cramps, headache, diarrhea, anemia, and permanent
damage of kidney and brain. The metal cadmium toxicity could
also induce DNA breakage. To remove the heavy metals from the
environment, conventional methods such as chemical precipitation,

electrochemical treatment, and ion exchange were being used but
these methods expensive and even remove the heavy metal at very low
concentration [51]. Microbial mediated bioremediation is one of the
appropriates the method for the removal of heavy metal accumulated
into the environment [52,53].

In the literature, numerous microbial species residing in diverse
conditions have been reported for remediating the heavy metals
polluting the environment. In a report, endophytic bacteria of Solanum
nigrum L., namely, Bacillus sp., were reported for the bioremediating
heavy metals such as copper, cadmium, and lead up to 75.78%,
80.48%, and 21.25% within 24 h if incubation [3]. Joshi et al. [54]
have reported four different fungi, namely, Aspergillus awamori,
A. flavus, Phanerochaete chrysosporium, and Trichoderma viride
for bioremediation of lead, cadmium, chromium, and nickel. In
another investigation, uranium biomineralization was reported by the
bacterium Pseudomonas aeruginosa isolated from contaminated mine
waste [55]. In a similar report, bacterium Pseudomonas aeruginosa
and fungi Penicillium corylophilum isolated soil and phylloplane
samples from traffic and non-traffic site of Sohag city, Egypt, were
reported for bioremediating cadmium, zinc, and lead ion [56].

In a report, Gram-negative bacterial species, namely, Enterobacter sp.,
was reported for detoxification of copper metal, Stenotrophomonas
sp. and Providencia sp. were reported for cadmium bioremediation,
whereas Chryseobacterium sp., and Comamonas sp. were reported
for the removal of cobalt and Ochrobactrum sp. reported for the
bioremediation of chromium. These strains were reported for
resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l, and 29 mg Cr/l in a
wastewater [57]. Bhakta et al. [58] reported diverse bacterium species
for remediating cadmium and arsenic and they were identified as
Acinetobacter brisouii, Pseudomonas abietaniphila, Exiguobacterium
aestuarii, and Planococcus rifietoensis. Kang et al. [59] have reported
lead-resistant bacterium Enterobacter cloacae for the removal of lead
up to 60% within the 48 h of incubation. In another report, endophytic
bacterium, Paenibacillus sp., associated with plant Tridax procumbens
was reported for bioremediating copper, zinc, lead, and arsenic up to
750 mg/L, 500 mg/L, 450 mg/L, and 400 mg/L, respectively [60].

In an investigation, the carcinogenic heavy metals lead, chromium,
and cadmium were detoxified by the microbes, namely, Gemella sp.,
Hafnia sp., and Micrococcus sp. [61]. In a report by Raman et al. [62],
bacterium, Stenotrophomonas maltophilia, isolated from the tannery
effluent was reported for remediating hexavalent chromium. In a similar
report, from an electroplating treatment, plant bacteria belonging to
genera Bacillus, Shewanella, Lysinibacillus, and Acinetobacter genera
were isolated which were reported for the detoxifying copper, nickel,
manganese, cobalt, and chromium metals [63]. In another report,
urease-producing bacteria Sporosarcina pasteurii, Stenotrophomonas
rhizophila, and Variovorax boronicumulans isolated from the Iranian
mine calcareous soils were reported for the biomineralizing various
heavy metals [64]. Aibeche er al. [65] have reported yeast strains
including Rhodotorula mucilaginosa, Clavispora lusitaniae, and
Wickerhamomyces anomalus for the remediation of heavy metals
mercury, chromium, cadmium, lead, copper, zinc, and iron. These
yeast strains were isolated from the lead and cadmium highly polluted
area of Dayet Oum Ghellaz Lake water [Table 2].

3.3. Bioremediation of Xenobiotics

Xenobiotics are chemicals which are considered as foreign substances
in the atmosphere. These compounds are synthesized by human beings
such as agro chemicals used in agriculture, and toxic waste generation
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Table 1: Microbes mediated remediation of toxic effluents from pulp and paper industries.

Microbes Role References
Pseudomonas stutzeri Degrades pentachlorophenol Karn et al. [37]
Pseudomonas putida Degrades color and lignin Garg et al. [39]
Pseudochrobactrum glaciale Decolorization Chandra, Singh [40]
Providencia rettgeri Decolorization Chandra, Singh [40]
Brevibacillus agri Reduces COD, color, and lignin Hooda et al. [43]
Serratia liquefaciens Detoxifying color, lignin, COD, and phenols Haq et al. [44]
Brevibacillus parabrevis Reduces COD and lignin Hooda et al. [46]
Citrobacter freundii Decolorization Abhishek et al. [45]
Serratia marcescens Decolorization Abhishek et al. [45]
Planococcus sp. Reduces of phenol, lignin, color, and COD Majumdar et al. [47]
Bacillus sp. Reduces color, COD, BOD, and TOC Sonkar et al. [48]
Pseudomonas stutzeri Reduces absorbable organic halides Sonkar et al. [49]
Serratia sp. Reduces color, lignin, phenol, BOD, and COD An et al. [50]
Pseudomonas aeruginosa Reduces BOD, COD, color, and lignin Tiku et al. [214]
Bacillus megaterium Reduces BOD, COD, color, and lignin Tiku et al. [214]

Bacillus megaterium
Bacillus pumilus
Bacillus thuringiensis

Bacillus cereus

Degrades pentachlorophenol
Degrades pentachlorophenol
Degrades pentachlorophenol

Degrades pentachlorophenol

Karn et al. [215
Karn et al. [215
Karn et al. [215]

Tripathi et al. [216]

]
]

Klebsiella pneumoniae Reduce of COD, BOD, and color Chandra et al. [217]
Citrobacter sp. Reduce of COD, BOD, and color Chandra et al. [217]
Pseudomonas sp Removes of chlorinated compounds Das et al. [218]
Aspergillus oryzae Reduces COD and color Chavan et al. [219]

Paenibacillus sp.
Paenibacillus glucanolyticus
Pseudomonas plecoglossicida
Bacillus megaterium

Phlebia brevispora

Bacillus subtilis

Klebsiella pneumoniae
Achromobacter xylosoxidans
Aspergillus flavus

Kocuria turfanesis

Reduces color, lignin, phenol, BOD, and COD

Degrade black liquor and lignin
Degrade black liquor

Degrade black liquor
Decolorization

Degrades kraft lignin

Degrades kraft lignin
Biodegradation of catechol
Degrades color and lignin

Reduces color, COD, and BOD

Raj et al. [42]
Mathews et al. [220]
Paliwal et al. [221]
Paliwal et al. [221]
Fonseca et al. [222]
Yadav, Chandra [223]
Yadav, Chandra [223]

Bramhachari et al. [224]

Barapatre, Jha [225]
Ahmadi et al. [226]

Halomonas alkaliphila Reduces color, COD, and BOD Ahmadi et al. [226]
Pseudomonas balearica Reduces color, COD, and BOD Ahmadi et al. [226]
Rhodosporidium kratochvilovae Reduces color, lignin, phenol, and COD Patel et al. [227]
Pleurotus ostreatus Reduces COD and BOD Rivera-Hoyos et al. [228]
Bacillus aryabhattai Degrades color and lignin Zainith et al. [229]
Rhodococcus pyridinivorans Degrades phenol Barik et al. [230]

from paint, plastics, and textile industries [66,67]. Xenobiotics including
DDT and halogenated aromatic compounds pose harmful impact on the
environment [68]. The biota is negatively affected by xenobiotics in the
environment. These toxic substances can cause skin problem in human
and can possibly cause cancer if exposed for lengthy periods of time.
Bioaccumulation of xenobiotics can lead to their entry into food chain in
turn increasing the tropical level of the ecosystem [69]. The degradation
of such compounds is not easy due to their recalcitrant nature [70].
Chemical processes do not break down compounds containing group
such as halogen, nitro, or sulfonyl into simple inorganic materials. As

a result, microbial bioremediation is an effective method for removing
or breaking down specific pollutants in the environment. The finest tool
for bioremediation is the utilization of minute organism that cover half
of our planet’s biomass since they can quickly grow and proliferate on a
large scale in a short amount of time and are also cost effective. Microbes
can breakdown such harmful compounds using certain enzymes that
breakdown xenobiotics compound into harmless end products.

Azo dyes have been found to be mostly used in the textile industries
and are used for coloring of various materials including cosmetics,
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Table 2: Microbes mediated remediation of heavy metals.
Microbes Heavy metals
Aspergillus awamori
Aspergillus flavus
Phanerochaete chrysosporium

Trichoderma viride

Pseudomonas aeruginosa Uranium
Pseudomonas aeruginosa Cd, Zn, and Pb
Penicillium corylophilum Cd, Zn, and Pb
Acinetobacter brisouii As and Cd
Pseudomonas abietaniphila As and Cd
Exiguobacterium aestuarii As and Cd
Planococcus rifietoensis As and Cd
Enterobacter cloacae Pb
Stenotrophomonas maltophilia Cr
Sporosarcina pasteurii Zn, Pb, and Cd
Stenotrophomonas rhizophila Zn, Pb, and Cd
Variovorax boronicumulans Zn, Pb, and Cd
Ralstonia pickettii Cu, Pb, and Ni

Pseudomonas lubricans

Clostridium subterminale Fe, Zn, and Cu
Clostridium pascui Fe, Zn, and Cu
Clostridium mesophilum Fe, Zn, and Cu
Clostridium peptidovorans Fe, Zn, and Cu
Desulfovibrio desulfuricans Fe, Zn, and Cu
Aspergillus niger Cu and Pb
Aspergillus fumigatus Cu and Pb
Trichoderma asperellum Cu and Pb
Penicillium simplicissimum Cu and Pb
Penicillium janthinellum Cu and Pb

Graphium putredinis
Fusarium solani

Penicillium chrysogenum

Exiguobacterium aestuarii Niand Cr
Bacillus weihenstephanensis Ni and Cr
Bacillus firmus As and Cr

Azotobacter chroococcum
Rhizobium leguminosarum
Microbacterium oxydans Uranium
Cronobacter muytjensii
Pseudomonas putida

Pseudomonas monteilii

Pb, Cd, Cr, and Ni
Pb, Cd, Cr, and Ni
Pb, Cd, Cr, and Ni
Pb, Cd, Cr, and Ni

Cu, Cr, Ni, and Hg

Cd, Ce, Ni, Pb, and Zn
Cd, Ce, Ni, Pb, and Zn
Cd, Ce, Ni, Pb, and Zn

Cd, Cu, Cr, Co, Hg, Ni, Zn, and Pb
Cu, Cd, Ni, and Zn

Cd, Cr, Cu, and Zn
Ag, Cr, Co, Mg, and Pb
As, Cr, Co, Cd, Hg, Pb, Se, and Zn
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food, textile, and leather. Textile industry is the second largest industry
in India. It makes use of natural and synthetic dyes, heavy metals,
and mordants for manufacturing of textile fabrics. Recently, more
than 2000 azo dyes are being used in various industries, in which
textile coloration industries are the largest users. There is estimation
that only 10% of these dyes bind when applied to the material and
remaining is released into the water bodies and affects the aquatic
life [71]. The treatment of these pollutants through microbes is

emerging as a potential tool and a number of microbial species
have been reported to degrade these dyes including Zobellella sp.,
Sphingomonas  paucimobilis, indica,
sp., Pichia occidentalis, Paenibacillus polymyxa, Oceanimonas

Shewanella Rheinheimera

smirnovii, Micrococcus luteus, Marinobacterium sp., Halomonas sp.,
Brevibacillus sp., Bacillus fusiformis, and Acinetobacter junii [72].

The use of chemical fertilizers and pesticides to increase grain
output has led to several environmental issues such as reduction in
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soil fertility and biodiversity as well as increase of soil acidification
and weed species resistance. These substances contaminated the
air, groundwater, and bodies of water [73]. The persistence of these
chemicals in the environment for a long time can affect the entire
ecosystem. The increasing challenges to remove these pollutants
from the environment shifted the paradigm toward the utilization of
the microbes. Many microbes have been reported for their ability
of degrading alachlor, atrazine, chlorpyrifos, DDT, endosulfan,
fenpropathrin, paichongding, profenofos, phenylurea, parathion,
mefenacet, and methyl parathion [74]. Degradation of endosulfan by
Staphylococcus sp., Bacillus circulans-1, and Bacillus circulans-11 has
been reported [75]. Acremonium sp., Alcaligenes faecalis, Bacillus
licheniformis, and Bacillus thuringiensis [76-79] have been reported
for degrading chlorpyrifos. Pseudomonas aeruginosa, P. nitroreducens
and P. putida [80], Providencia stuartii [81], Botryosphaeria
laricina [82], Cupriavidus taiwanensis [83] have been reported for
degradation of chlorpyrifos bacteria.

DDT was the most widely used pesticides in the 1940s. Several
studies have been conducted that it has negative impact on the
ecosystem as well as non-target creatures such as fishes and birds.
It’s upregulation in adipose tissue and its estrogenic properties raised
concerns about its potential long-term adverse effects. It is further
known to be carcinogenic in nature, affects neurobehavioral functions
and associated with premature birth. Sweden was the first country to
prohibit its use in 1970, citing environmental concerns. Its production
was banned by the USSR in 1981. Further, in 1989, it was banned for
medical-disinfecting purposes. By 1972, most of the countries banned
its use due to negative impact on the wildlife. It takes 3 to 30 years for
the degradation thereby remaining in the atmosphere for an extended
period and effect the surrounding environment [84]. Many microbes
such as Alcaligenes sp., Ochrobactrum sp., Sphingobacterium sp., and
Stenotrophomonas sp. have been reported for degrading this hazardous
pesticide [85-88]. Endosulfan widely used worldwide for regulatory
beetle, cabbage worms, Colorado potato, and peach tree borer has
been reported to be degraded by Bacillus subtilis and Mycobacterium
sp. [89,90]. Furthermore, Alcaligenes xylosoxidans, Arthrobacter
globiformis, Nocardioides sp., Providencia rustigianii, Pseudomonas
marginalis, Pseudomonas putida, Rhodococcus rhodochrous, and
Stenotrophomonas sp. have been reported for degrading different
herbicides [91-93].

Nitro-aromatic compounds, another harmful xenobiotics produced by
incomplete combustion of fossil fuels are released into the atmosphere,
largely from anthropogenic sources. Second, nitration is an essential
chemical reaction for the commercial synthesis and uses of numerous
amino aromatic intermediates as a feedstock for the production of
explosive, pesticides, herbicides, polymers, dyes, medicine, and
other products. Various microbes such as Arthrobacter ureafaciens,
Pseudomonas  sp., Rhodococcus — wratislaviensis, Shewanella
oneidensis, and Streptomyces mirabilis have been reported for the
degradation of nitro-aromatic compounds [94-98]. Another microbes
such as Pseudomonas putida, P. putida, P. mendocina, Burkholderia
cepacia, B. cepacia and Ralstonia pickettii  [99], Arthrobacter
sp., Enterobacter agglomerans, Escherichia coli, Pseudomonas
cepacia, Pseudomonas sp., Rhizobium sp., Staphylococcus aureus,
and Xanthomonas sp. have been reported for degrading chlorinated
hydrocarbons [100,101].

Di-(2-ethylhexyl) phthalate (DEHP) widely used in the production
of polyvinylchloride is another major contributor of environmental
pollution. DEHP is known to be an endocrine disrupting substance.

In a study Li, Gu [102] reported that Klebsiella oxytoca Sc and
Methylobacterium mesophilicum Sr have degradation of PAEs. In one
of the investigations, Baek et al. [103] proposed Micrococcus luteus
for the degradation of DEHP. Yuan et al. [104] reported degradation of
DEHP by Bacillus sp. Furthermore, Rhodococcus sp. has been shown
to have a strong ability to degrade DEHP [105,106]. Biodegradation
through microbes is one of the most promising, relatively efficient,
and cost-effective technologies. In particular, this technique is
economically viable and enhances the quality of life for farmers and
society as a whole.

3.4. Bioremediation of Polyaromatic Hydrocarbons

PAHs, a class of toxic-fused ring aromatic compounds, are widespread
organic pollutants accumulated in the environment either due to
anthropogenic or natural activities. These compounds have a high
molecular weight and can persist for years [107]. They are mostly
produced from incomplete combustion of fossil fuels, petroleum
products, and industrial activities. The natural calamities such as forest
fires and volcanic eruptions also contribute to their accumulation in the
environment [108]. PAHs exist as a complex mixture in many different
petroleum-based products. Soils and waters surrounding gas plants,
soil refineries, air bases, petrol stations, and chemical industrial sites
are common sources of contamination. PAHs have been shown to be
carcinogenic and mutagenic to human and animal health, and as a result,
the US EPA has classified them as priority pollutants [109]. PAHs
can enter the human body through a variety of pathways, including
air, food, soil, water, and occupational exposure. PAH can also enter
the water supply through a variety of sources, including industrial
and home waste, as well as urban runoff and automobile emissions.
The removal of these specific contaminants of the atmosphere has
extended attention because it caused damage ranging from human to
the environment, marine and land animals, and agricultural soil. PAHs
are challenging to remove from soil due to their insolubility in water
and degrade slowly [110].

The clean-up of soil through bioremediation is one of the most
efficient means to restore original ecosystem conditions [111]. The
PAH-degrading microorganisms include algae, bacteria, and fungi.
The use of microorganisms for bioremediation of PAH-contaminated
environments seems to be an attractive technology for restoration of
polluted sites. Microbes play a major role in the removal of PAHs
from the environment. Different pathways used by diverse microbes
for the biodegradation of different PAHs are shown. A wide variety
of microbes have been observed to be capable of PAH degradation
using metabolic pathways and substrate ranges. In a study, Krivobok
et al. [112] reported anthracene degrading Cryphonectria parasitica,
Ceriporiopsis  subvermispora,  Oxysporum  sp., Cladosporium
herbarum, Rhizopus arrhizus, Phanerochaete chrysosporium, Irpex
lacteus, and Pleurotus ostreatus were isolated from soil and help to
degradation of. Another investigation Annweiler et al. [113] reported
bacteria Bacillus thermoleovorans isolated from contaminated
compost, have ability to degradation of naphthalene compounds.
Similarly, Chauhan et al. [114] reported Comamonas testosterone,
Pseudomonas stutzeri, Sphingomonas paucimobilis, Mycobacterium
sp., Nocardioides sp., and Alcaligenes faecalis have capability to
degrade naphthalene, anthracene, benzo[b] fluoranthene, pyrene,
benzo[a]pyrene, 1-nitropyrene, and phenanthrene. Another report
Chaudhary et al. [115] reported Haemophilus sp., Mycobacterium
sp., Pseudomonas sp., and Rhodococcus sp. separated from soil for
their ability to degrade to phenanthrene, naphthalene, anthracene,
pyrene, and benzo[a]pyrene. Mangwani et al. [116] reported
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Stenotrophomonas acidaminiphila and Alcaligenes faecalis isolated
from Chilika lagoon, Pseudomonas mendocina from Rushikulya
estuary, Pseudomonas aeruginosa from Paradeep port; all microbes
have ability to degradation of PAHs compounds such as phenanthrene
and pyrene [Table 3].

4. TECHNIQUES FOR BIOREMEDIATION

The development of eco-friendly, cost-effective, and reliable clean-up
technology is a priority to decontaminate the environment. Microbes
are the readily available and omnipresent bioresources which can
utilize these noxious elements as their source of nutrition. They
possess amazing capabilities to survive in varying environment and
produce metabolites that can transform environmental pollutants thus
making it possible to revive contaminated sites naturally. Different
remediation techniques can be utilized, but due to the number of
advantages offered by microbes and rise in the costs of the physical
and the chemical treatments, microbe-mediated bioremediation is the
most preferred approach to tackle the worldwide contamination. The
US Environmental Protection Agency has described two methods

of bioremediation, that is, in situ and ex situ [117]. Microbes can be
applied in both in situ and ex situ conditions.

4.1. In situ Bioremediation

The technique involves the application of a biological treatment
for cleaning up of hazardous compounds and has been commonly
applied for degradation of contaminants in saturated soils and
groundwater [118-120]. It relies on the microbial activities for
destruction and detoxification of contaminants present in a place.
On the contrary, the capability of the microbes to convert the toxic
contaminants into less toxic or non-toxic forms is completely
dependent on availability of the nutrients and electron acceptors
and donors. Bioremediation through in situ approach is sustainable
as the requirements of transport, deposition of contaminated soil,
groundwater pumping, treatment, and discharge to recipients are
removed [121]. Moreover, it offers many advantages such cost-
effectiveness, utilization of native harmless microbial species, and
large volume of contaminated soil or water could be treated with
less release of toxic contaminants. /n situ bioremediation approach

Table 3: Microbe mediated bioremediation of different toxic compounds.

Microbes

Aeromonas hydrophila
Alcaligenes faecalis
Alcaligenes faecalis
Anthracophyllum discolor
Bacillus megaterium
Bacillus thermoleovorans
Burkholderia cepacia
Burkholderia sp.
Ceriporiopsis subvermispora
Cladosporium herbarum
Cryphonectria parasitica
Irpex lacteus
Micrococcus varians
Oxysporum sp.
Paracoccus sp.
Phanerochaete chrysosporium
Pleurotus ostreatus
Pleurotus ostreatus,
Pseudomonas aeruginosa
Pseudomonas citronellolis
Pseudomonas mendocina
Pseudomonas mendocina

Pseudomonas
pseudoalcaligenes

Pseudomonas putida
Pseudomonas sp.
Raoultella ornithinolytica
Rhizobium tropici
Rhizopus arrhizus
Rhodococcus erythropolis

Rhodococcus sp.

Compound

Acenaphthene and fluorene

Pyrene

Naphthalene, phenanthrene and chrysene degradability
Phenanthrene, Anthracene, Fluoranthene and Pyrene
Acenaphthene and fluorene

Naphthalene

Acenaphthylene, anthracene, benzo(b) fluoranthene

Fluorene, naphthalene, and phenanthrene

Source References

Water Alegbeleye et al. [244]
ChilikaLagoon Mangwani et al. [116]
Soil John et al. [245]

Soil Acevedo et al. [246]
Water Alegbeleye et al. [244]
Contaminatedcompost Annweiler et al. [113]
Claysoil Reda [247]

Oilrefinerywastewaterdrainage

Andreolli et al. [248]

Anthracene Soil Krivobok et al. [112]
Anthracene Soil Krivobok ez al. [112]
Anthracene Soil Krivobok et al. [112]
Anthracene Soil Krivobok ez al. [112]
Naphthalene, phenanthrene, and chrysene degradability Soil John et al. [245]
Anthracene Soil Krivobok ez al. [112]
Anthracene PollutedGreeksoil Zhang et al. [249]
Anthracene Soil Krivobok ez al. [112]
Benzo(a)pyrene and benzo(a)anthracene Contaminatedsoil Li et al. [250]
Anthracene Soil Krivobok et al. [112]
Phenanthrene PAH-contaminatedsoil Wong et al. [251]
Anthracene Petrochemicalsludgelandfarmingsite Jacques et al. [252]

Phenanthrene, Pyrene
Phenanthrene

Phenanthrene, pyrene

Naphthalene, phenanthrene, and chrysene degradability
Naphthalene

Acenaphthene and fluorene

Phenanthrene (PHE) or benzo[a]pyrene (BaP)
Anthracene

Phenanthrene, anthracene, and fluoranthene

Phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP)

Rushikulyaestuary Mangwani et al. [116]
Soils Chaudhary et al. [115]
Paradeepport Mangwani et al. [116]
Soil John et al. [245]

Soils Chaudhary et al. [115]
Water Alegbeleye et al. [244]
Phaseolusvulgaris Yessica et al. [253]
Soil Krivobok et al. [112]
Mangroveecosystem Lang et al. [254]
Crudeoil Song et al. [255]
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has been mostly used for the degradation of anilines, chlorinated
hydrocarbons, nitrobenzenes, nitriles, and plasticizers in soil and
groundwater [122-128]. In situ bioremediation includes

4.1.1. Biosparging

This approach involves the injection of the air under pressure below
the water table. This, in turn, increases oxygen concentrations of
groundwater and rate of biodegradation by naturally occurring
bacterial species [129]. Biosparging finds major applications in the
treatment of aquifers polluted with kerosene and diesel, which have
good biodegradation of the BTEX group and naphthalene [130]. The
effectiveness of biosparging depends on soil permeability as well as
the pollutant biodegradability [131].

4.1.2. Bioventing

Bioventing is a potential technology that stimulates the natural in situ
biodegradation of compounds that can be degraded aerobically by
existing soil microbial communities [132]. The technique involves
controlled stimulation of the air flow, providing oxygen in sufficient
levels to sustain activities of the microbes thereby enhancing the
process of bioremediation [133]. The levels of nutrients and humidity
are maintained to achieve transformation of pollutants. This technique
has been successfully used in the remediation of soils polluted by oil
products [134].

4.1.3. Bioaugmentation and biostimulation

In bioaugmentation, the autochthonous microflora of the polluted site
is enriched by adding previously selected indigenous or genetically
modified species of microbes to enhance the process of remediation.
Bioaugmentation is used for the soils and groundwater contaminated
with tetrachloroethylene and trichloroethylene where the approach
ensures that the in situ microbes degrade these contaminants to non-
toxic compounds such as ethylene and chlorides [135]. Biostimulation
involves the use of native microorganisms which are stimulated to
grow with the addition of nutrients including phosphorus and nitrogen,
O,, or other oxidizing agents. Stimulating agents are usually applied
underground by means of injection wells [136]. The involvement of
well-adaptive autochthonous microorganisms is the major advantage
of using this approach. Recently, it has been suggested that both these
techniques can be also applied ex situ though classified into in situ
bioremediation approach [137].

4.1.4. Biopiling

In biopiling, excavated soils are mixed with soil amendments, placed
on a treatment area, and bioremediated using forced aeration. The
contaminants are reduced to carbon dioxide and water. The conditions
such as levels of moisture and nutrients, heat, oxygen, and pH are
controlled to enhance the process of biodegradation [132].

4.2. Ex situ Bioremediation

This technique involves digging pollutants from polluted sites and
successively transporting them to another site for treatment. Certain
factors are taken into consideration for applying ex situ bioremediation
techniques such as depth of pollution, type of pollutant, treatment cost,
and geographical location of the polluted site [138]. The technique
is further categorized into solid-phase and slurry-phase systems
depending on the state of the pollutant to be removed. The solid-
phase system involves treatments of agricultural, domestic, industrial,
organic, and municipal solid wastes. Solid-phase treatment processes
further include land farming, composting, and soil biopile techniques.
Land farming, also known as land treatment, involves the excavation
of the contaminated soil and spreading it on a thin surface [139]. The

target of applying this technique is to stimulate indigenous microbes
with biodegrading potential and facilitate degradation of contaminants
under aerobic conditions [120]. Soil biopiles, also known as biocells,
are a used for the remediation of excavated soil contaminated chiefly
with petroleum contents. Biopiles provide a favorable environment
for indigenous aerobic as well as anaerobic microbes. Compositing
involves the combining of contaminated soil with non-hazardous
organic amendments including agricultural wastes, corncobs, hay,
manure, and straw so as to maintain optimum levels of air and water to
the microbes. The types of amendments used depend on the soil porosity
and the carbon and nitrogen balance of needed to encourage microbial
activity. Slurry-phase bioremediation, also known as bioreactors, is a
controlled treatment that involves the excavation of the contaminated
soil, mixing it with water and placing it in a bioreactor.

5. MONITORING OF BIOREMEDIATION PROCESSES

As aresult of population explosion and rapid industrialization, different
contaminants have been generated and dumped into the environment.
These harmful materials have a negative impact on human health
as well as on the environment. However, microbial-mediated
bioremediation seems to have great promise in restoring contaminated
surroundings in an environmentally friendly manner. It is necessary
to prove that there is an enough microorganism population able of
fighting the specific pollutants before bioremediation can be deemed
a remediation approach [140]. Monitoring begins with the use of
standard microbiological techniques for quantifying viable populations
of microbes and basic chemical analysis for the identification of
pollutant. Although when specific microbial populations are difficult
to grow, the enrichment culture may disclose the existence of essential
degrading bacteria and prove that they have the inherent inclination
to decompose the contaminant at a satisfactory rate [141]. There
are new molecular microbial ecology tools which do not depend on
culturing due to functional and non-culturable phenomenon and have
been proven to be highly beneficial for monitoring bioremediation
progress [142].

Microbial population changes can be explored during bioremediation,
as well as more detailed analytical work, such as gas chromatography
[flame ionization detector (FID) or: electron capture detector (ECD)],
tests on the fate of 14C-radiolabeled substrates to determine whether
mineralization or biodegradation of the substrate has taken place or a
simple transformation to a more stable state, and high-performance
liquid chromatography (HPLC) [141]. These strategies have been used
in a variety of field scale and laboratory bioremediation investigations,
and they have proven to be effective in tracking the development of
bioremediation in various environmental media [140,143,144].

The intake of molecular oxygen or the generation of CO, can be
used to measure microbial activity and aerobic metabolism using
respirometry [145]. Furthermore, respirometric studies can be used to
examine the possible decomposition in soil of petroleum hydrocarbons,
nutritional limits, the heavy metal ability to, toxic chemicals, clayey
acidic soil, and the impact of pH on soil microbial activity [146-149].
Respirometry studies could also be used to assess various biological
treatment procedures, the impact of culture bioaugmentation, and
nutrient supplementation, and to demonstrate active hydrocarbon
breakdown during a full-scale bioremediation.

Soil microcosm experiments can help to determine the biodegradation
capability of hydrocarbon-contaminated soils and developing models
to predict their destiny. The pollutant concentrations and their metabolic
by products could be evaluated during the test to acquire meaningful
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biodegradation kinetics data and to determine the best bioremediation
method for a large-scale application. Slurry bioreactors of various
sizes can also be used to test biodegradation capability. These
bioreactors have numerous benefits, such as effective aeration, mixing
and better substrate supply, as well as can drastically shorten treatment
time [145,149]. Fourier-transform infrared spectroscopy (FTIR),
high-performance liquid chromatography (HPLC), mass spectrometry
(MS), gas chromatography, infrared (IR) absorption, and thin-layer
chromatography (TLC) among other techniques are used to evaluate
the rates of contaminant degradation and product creation [148].
The biodegradation of semi volatile hydrocarbons in diesel fuel-
contaminated soil and water, as well as volatile hydrocarbons during
growth of bacteria on crude oil, has been monitored using solid-phase
micro extraction (SPME) [150,151]. In petroleum biodegradation
systems, solid-phase microextraction has been shown to be a quick
and precise approach for evaluating semi-volatile and volatile
hydrocarbons.

Microbial interactions in the atmosphere and how they utilize
hydrocarbons as a substrate can be learned using traditional culture
techniques. Specific hydrocarbon-degrading microbial counts and
total heterotrophic microbial counts in polluted soil give helpful
info on how well the native microbial community has adapted to the
polluted environmental conditions and whether it is able to maintain
bioremediation. Microbial counts are often assessed in representative
soil composite samples, and there has been evidence of a substantial
link between microbial numbers and hydrocarbon breakdown [152].
Non-hydrocarbon-degrading bacteria can grow on agar plates with
volatile, liquid, or solid hydrocarbons; hence, caution should be used
when reporting counts of hydrocarbon-degrading organisms [153,154].
In a study of mineral agar plates either with or without toluene-xylene
fumes, it was discovered that few choice was made over bacteria
that degrade xylene and non-toluene. For non-volatile hydrocarbons
depending on emulsion formation, a fast MPN test (sheen screen)
utilizing tissue culture plates can be used [155]. The microbial
biomass is one of the other potential indications of soil contamination
evaluation. Muramic acid can be used to identify bacterial biomass,
while ergosterol has been proposed as a fungus indication [156,157].

Physiological or biochemical method includes phospholipid fatty acid
analysis (PLFA). Microbial cell membranes contain phospholipid fatty
acid (PLFA), which are important components. PLFA isolated from
soils can be analyzed to learn more about the general organization
of terrestrial microbial populations. PLFA profiling has been widely
employed as a biological indicator of overall soil quality and a
quantitative indication of soil response to land management and other
environmental stresses in a variety of habitats [158]. Soil enzymes
play a key role in major degradation processes such as xenobiotic
detoxification and organic matter decomposition. Because of their
key function in the soil environment, soil enzymes such as lipases,
ureases, dehydrogenases, alkaline and acid phosphatases, catalases,
and arylsulfatase can be considered useful markers for monitoring
the effects of contaminated soils. Despite the fact that soil enzymatic
activity has been utilized as bioindicators of pollution with herbicides,
heavy metals, and organic pollutants, little is known about their
potential as bioindicators of hydrocarbon biodegradation [159,160].
There is mounting evidence that soil bioactivity is vulnerable to
environmental pressures and, as a result, can be utilized as a rapid
approach to test soil decontamination in association with other
appropriate methods. Enzymatic assays, on the other hand, will need
more research and data before they can be utilized as the primary tool
for assessing bioremediation.

BIOLOG microtiter plate assay can be used as a quick way to track
changes in microbial communities metabolic fingerprints [161]. This
approach was developed to classify bacteria on the basis of their ability
to oxidize 95 distinct carbon sources, but it was later refined to assess
functional aspects of microbial communities that produce habitat-
specific and reproducible patterns of carbon substrate oxidation [162].
The density and composition of the inoculum utilized have been
found to affect substrate utilization patterns. Although growth of
bacteria happens in the microtiter plate wells during the experiment,
the patterns of substrate usage seen are shown to reflect only those
microorganisms that can thrive under the standard assay conditions.
Despite its drawbacks, this quick approach is nevertheless a helpful
tool for microbial community study.

The interaction of an antibody (detector) and an antigen is the basis
of immunochemical procedures (pollutant) [163]. To prevent the
groundwater pollution caused by pesticide, best management practices
for agricultural (BMP) have been recommended by pesticides and
groundwater strategy (the US Environmental Protection Agency).
Hydrocarbon-degrading microbes can be quantified in near real
time using ELISA and direct immunofluorescence [164]. For speedy
analysis of complex sample matrices in the field, immunodetection
has shown to work quite well. Antibody mixtures could be created to
tackle certain bacterial groups, although measuring the expression of
individual genes involved in hydrocarbon metabolism would be more
useful in most cases. Immunoassay test kits are now accessible on
the market, and immunoassay procedures are widely used in a wide
range of applications. Monitoring of underground storage tanks for
volatile organic compounds leakage, agricultural runoff for pesticides,
chemical and biological testing of poultry, dairy, and meat products
for safety, and monitoring the characterization and bioremediation of
hazardous waste sites are just a few of the environmental remediation.

Molecular techniques for evaluation of microbial community
profiles include 16S rRNA sequencing, reverse sample genome
probing (RSGP), the polymerase chain reaction (PCR) along with
denaturing and temperature gradient gel electrophoresis (DGGE and
TGGE), ribosomal intergenic spacer analysis (RISA), single-strand
conformation polymorphism (SSCP), 16S pyrotags, ITS-restriction
fragment length polymorphism (ITS-RFLP), terminal restriction
fragment length polymorphism (T-RFLP), automated ribosomal
intergenic spacer analysis (ARISA), random amplified polymorphic
DNA (RAPD), 16S-23S internally transcribed spacer (ITS) typing,
amplified ribosomal DNA restriction analysis (ARDRA), single-
strand conformation polymorphism (SSCP), and fluorescent in situ
hybridization (FISH) [165-168].

Another valuable tool for evaluating microorganisms and their
activity in environmental materials is DNA microarray technology
because it allows conducting high number of hybridizations
concurrently [169]. Many existing analytical techniques for pollution
monitoring necessitate costly equipment and substantial processing
of environmental samples. Traditional analytical methods are unable
to distinguish between chemicals that are inaccessible and those that
are bioavailable. Analytical methods used in the past only provided
data on concentrations in polluted stages. The shortcomings of
traditional analytical methods have sparked interest in developing new
approaches, such as innovative bacterial biosensors. A biosensor is a
type of analytical device that combines a biological sensing element
(such as an antibody or an enzyme) with a physical transducer (such as
mass, an optical, or electrochemical) to convert the interaction between
bio-recognition molecules and the target into a measurable electrical
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signal [170]. Escherichia coli, Pseudomonas putida, Burkholderia
sp., and Rhodococcus eutropha are some examples of biosensors
developed for monitoring different contaminants [171-174].

Bioremediation also utilizes the engineered microbial biosensors
developed from bacterial two-component regulatory systems
(TCRSs) [175]. Our understanding of microbial population diversity
and communities present in the environment is evolving because of the
rapid improvements in molecular technologies. The ability of inherent
unpredictability of microbial populations with time, on the other hand,
remains a significant challenge. To eliminate background variability,
rapid automated methods will be necessary to process and assess huge
amounts of data. Even so, it is important to remember that, while
molecular approaches are strong and appealing, a community’s genetic
composition cannot be used to correctly extrapolate the function of
ecosystem.

Thus, over the past two decades, monitoring of the microbial
processes during bioremediation of contaminated sites has always
been a challenge and a key research focus for the development of
quick and reliable approaches. Various advanced molecular and
biochemical approaches can be used to assess the existence of
dangerous substances and the ecological risk. Molecular methods are
an essential interdisciplinary endeavor that involves both biological
and computational knowledge. Various advanced molecular and
biochemical approaches can be used to assess the existence of
dangerous substances and the ecological risk. Molecular methods are
an essential interdisciplinary endeavor that involves both biological
and computational knowledge.

6. BIOTECHNOLOGICAL APPLICATIONS

Microbes, including bacteria, archaea, fungi, and algae through their
enzymatic activity, can degrade, transform, or neutralize toxic and
hazardous pollutants [176]. The identification of enriched microbes
at polluted sites has been accelerated by the growth and accessibility
of DNA sequencing technology. The polluted sites are often allowed
to naturally remediate in a process called natural attenuation which is
largely dependent on microbial activity [177]. The growth and activity
of the indigenous microbes could be enhanced by supplementing the
soil with nutrients such as plant or animal waste, a process known
as biostimulation. Alternatively, pollutant degradation could be
accelerated by bioaugmentation, which involves introduction of new
wild type or genetically engineered microbes that specialize in the
degradation of toxic compounds into the contaminated site [176].
Bioremediation through microbes has found practical applications as
an economical tool in the treatment of pollution in agricultural settings
as well as in other environments.

6.1. Environmental Applications

The environment could be polluted by various sources ranging from
industrial emissions and effluents to incineration, fossil fuel combustion
and automobile exhausts, chemical spills, and landfills. Gaseous
pollutants could be removed by passing industrial gases through a
microbiological filter surface in a process called biofiltration before
being released into the environment [178,179]. Sewage treatment
conducted worldwide to remediate water is a largely microbe-driven
process. The decontamination of land with hazardous pollutants may
be undertaken in situ often through biostimulation, but the natural
process of bioremediation and the microbes involved are frequently
investigated through the study and testing of polluted samples and
relevant microbes in laboratory settings.

A common pollutant, petroleum products such as gasoline or petrol
contain alkanes, cycloalkanes, aromatic, and heterocyclic compounds,
all of which may be subjected to enzymatic degradation by microbes.
Studies on gas station environments reveal the presence of microbe’s
actively metabolizing petrochemicals and decommissioned gas
stations are frequently remediated through microbial bioremediation.
In fact, one of the earliest examples of bioremediation, as reported in
the 1970s, was implemented to remove toxic petroleum products by
promoting microbial activity through the addition of nutrients [180].
Since then, bioremediation has been actively employed worldwide to
address environmental pollution. One of the most notable applications
of in situ bioremediation was the reclamation of an area that was
heavily polluted by a chemical storage facility, converting it into a
safe site called Olympic Park where the 2012 London Olympics
were held [181]. In this case, toxic ammonia was converted into safe
nitrogen gas, through the activity of archaea making the land area
reusable for public activity.

Toxic pollutants such PAHs and polychlorinated biphenyls (PCBs) can
persist in the soil long term, posing risks to human and environmental
health [182]. Semi-volatile polycyclic aromatic hydrocarbons (PAHs)
are among the most common industrial pollutants which are not
only present in petroleum products but also industrial wastes, wood
preservatives, and numerous other sources and can contaminate soil
and water aquifers. Many PAH compounds, including naphthalene,
phenanthrene, chrysene, and benzanthracene, are carcinogenic,
making the removal of these compounds from contaminated
environments close to human activity imperative. Environmental
PAH can be degraded or transformed into less toxic forms through
the activity of bacteria, archaea, and fungi. The mechanisms of
naphthalene degradation by Pseudomonas and Rhodococcus and
the decomposition of phenanthrene by Ochrobactrum have been
elucidated [183]. Some industrial effluents are inhospitable to normal
microbial life and under these conditions, for example in hypersaline
environments; extremophiles like halophilic archaea can thrive
and undertake the process of bioremediation. The white rot fungus,
Trametes versicolor, can decompose wood and has also evolved to
disintegrate toxic pollutants such as creosote, a wood preservative
which is largely made up of PAHs [184]. A study focusing on the
bioremediation of industrially polluted soil revealed competition
between PAH-degrading bacteria and the fungi like 7rametes and
each could be enriched through specific amendments that discouraged
the other species. This indicates that careful selection and balance of
amendments are necessary for optimal biodegradation by members
within a microbial community.

Heavy metals from industrial and automobile waste also threaten the
environment and animal health. One application of bioremediation
involved alleviation of chromium toxicity in industrial wastewater
using genetically engineered Alcaligenes eutrophus ae104 which
employed metallothionein and heavy metal transport proteins to
sequester toxic metal [10]. Toxic heavy metals are also commonly
found in landfills. Waste material from human civilization is dumped
into landfills where the disintegration of the biodegradable material is
accomplished primarily by microbes. As cities grow, landfills become
scarce or overloaded or start leaching pollutants into waterways or
may be decommissioned, in which cases bioremediation is an ideal
resort. The greenhouse gas methane and toxic ammonia are common
airborne pollutants emanating from landfills which could be reduced
through bioremediation. Accidental oil spills from man-made oil lines
as well as seepage of crude oil from natural resources both stimulate
blooms of hydrocarbon degrading bacteria that accelerate the recovery
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of the site. One practical example of bioremediation was treatment
of the Exxon Valdez oil spill from a crude oil tanker in Alaska in the
1990s. Follow-up studies revealed that the microbial degradation
under anaerobic conditions alleviated the oil contamination in the
beaches and that biostimulation with inorganic fertilizer enhanced oil
biodegradation [185,186].

It is well known how detrimental non-degradable plastic waste can be
to our environment, especially as it ends up in the oceans, threatening
marine life [187]. With the promise and success of bioremediation,
efforts are underway to explore microbial decomposition of plastic.
For example, the most commonly used plastic polyethylene (PE)
can be partially broken down by the bacterium Acinetobacter sp.,
using the enzymes alkane hydroxylase and laccase [188]. Over 20
genera of bacteria including Pseudomonas and Bacillus sp. as well
as cyanobacteria like Oscillatoria are found to be capable of plastic
degradation using it as a carbon source; many of them function
through the formation of biofilms on plastic surfaces [189]. These
microbes have been isolated from a variety of sources including
plastic dumps, ocean water, sewage sludge, and intestines of plastic-
eating worms [190]. Another commonly used plastic made with
polylactic acid can be degraded using Actinobacteria [191]. Another
bacterium, Ideonella sakaiensis, can enzymatically degrade the plastic
polyethylene terephthalate (PET)-producing ethylene glycol and
terephthalic acid as byproducts. Interestingly, wax worms consuming
polyethylene excrete large amounts of glycol which are presumably
produced by the plastic degradation activity of the worm’s gut
bacteria [192]. Thus, microbes are instrumental in a bioremediation in
a wide range of environmental pollution scenarios.

6.2. Agricultural Applications

Due to the increase in modern agriculture worldwide, there has
been dramatic contamination of produce, soil, groundwater, and the
surrounding environment by agricultural pollutants and toxins from
fertilizers and heavy metals to pesticides. By exposure to agricultural
fields and through consumption of agricultural products, this pollution
also impacts the safety of the consumer [15].

Akey aspect of agricultural pollution stems from the usage of polluting
inorganic fertilizers, especially those containing nitrogen, phosphorus,
and potassium (N, P, and K). Over-fertilized fields and those applying
animal waste can be bioremediated using microbes. Ammonia and
nitrogen oxides emanating from nitrogen based fertilizers could be
released into the atmosphere aggravating the greenhouse effect, create
ground-level smog, could contaminate waterways and affect aquatic
organisms, as well as pose harm to livestock and humans. Nitrogenous
compounds such as nitrates and nitrites released in agriculture could
result in respiratory distress, heart, or kidney diseases [193,194].
Bacterial bioremediation can remove compounds like nitrate in runoff
through assimilatory nitrate reduction [195]. Bioremediation is not
only limited to naturally occurring microbes but can also implement
genetically modified microbes (GMMs) to specifically attack
certain toxins or pollutants. Aerobic GMMs, such as Pseudomonas,
Mycobacterium, and Rhodococcus, use contaminants for carbon
and energy sources and thus will degrade them into less toxic
products [196]. Studies have shown success with using indigenous
Rhodobacter sphaeroides in wastewater to remove both nitrogen and
phosphorus species, indicating a potential remediation for agriculture
as well [197].

Heavy metal exposure, no matter the route, is potentially dangerous.
Specifically metals such as cadmium, lead, chromium, and mercury,

even in miniscule amounts, tend to be hazardous to animals and
humans [198]. Often, heavy metals from power plant emissions,
electroplating plants and fertilizers can enter into agricultural soil
directly or through irrigation channels and can be detrimental to
crop quality [199,200]. The damage caused by heavy metals in
agricultural soils is dependent on their bioavailability, specifically
their oxidation state and chemical form [199]. Due to their non-
biodegradable nature, heavy metals can accumulate in an organism’s
tissues causing further health implications. Bioremediation of
heavy metals has been done in both in situ and ex situ conditions
in a multitude of ways, including, bioventing, biostimulation, and
land farming [200]. The previous studies have shown success with
Agrobacterium species ability to absorb iron from its surroundings
as were also done by microbial biofilms of Rhodotorula species.
Other bacteria used in the bioremediation of heavy metals include
Flavobacterium, Pseudomonas, and Corynebacterium [10]. One
application of bioremediation is biotransformation, in which
microbes can transform metals from a very toxic form into less toxic
ones; for example, chromium VI, which is highly toxic is converted
by microbial activity to a less harmful chromium III, which is also
more easily removable [201]. Another implication of bioremediation
is through bioleaching with fungi. Some fungi, such as Mucor sp. or
Cladosporium sp., are able to resist varied environmental factors (pH,
temperature, etc.) and mobilize heavy metals by producing organic
acids [197]. Microbes often have optimal conditions in which they
work, which allow them to bioaccumulate metalloids at their ideal
pH and temperature. One study showed that heavy metal-resistant
Aspergillus sp. were able to efficiently remove 90% of Cr (VI) and 55%
of Ni (II) under a pH of 7.0, whereas in conditions 2 pH units above or
below, there was a drastic decrease in bioaccumulation [202]. Thus,
optimized microbial bioremediation is a promising tool to eradicate
heavy metals from agricultural settings.

Pesticides and herbicides, heavily used in agriculture, are substances
that are used to regulate the presence of weeds and prevent or minimize
the damage to crops done by insects, rodents, and molds [203]. Many
pesticides are carcinogenic and phenoxy acid herbicide, a weedicide,
has been associated with the development of soft-tissue sarcoma
(STS) and malignant lymphoma in humans [204]. Organochlorides
like the notoriously toxic chemical dichlorodiphenyltrichloroethane
(DDT) that has been banned from use and lindane are highly toxic,
persistent chemicals demonstrated to be harmful to the environment.
Organophosphates like diazinon are another group of pesticides
designed to kill insects, but they can cause damage to nerve function in
humans [205]. Exposure to organochlorides and/or organophosphates
can cause cancer and convulsions. Bioremediation is an effective
tool to combat pesticide pollution in agriculture. For instance, the
bacterium, Serratia, has been observed to metabolize DDT [182].
Chlorinated compounds in pesticides are preferentially degraded under
anaerobic conditions with fewer harmful byproducts by bacteria such
as Rhodococcus and Rhizobium [180,206,207]. Other bacteria that
are able to degrade pesticides include Flavobacterium, Arthrobacter,
Azotobacter, Burkholderia, and Pseudomonas genera. Fungi such as
Pleurotus can also degrade a variety of pesticide compounds [208]
[Figure 1].

Many pollutants that are not agricultural products also make
their way into agricultural fields and the underlying groundwater
and pose a threat to agriculture and consequently human health.
Substances such as gasoline, oil, and road salts can all run off into
agricultural soil and subsequently affect the produce. For example,
benzene can pollute groundwater through a gas line leak, landfill,
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Figure 1: Application of microbes to tackle pollution of agricultural settings. Left panel, toxic chemicals from agricultural products such as pesticides, inorganic

and organic fertilizers, and other environmental pollutants such as industrial compounds such as PAH and PCB can contaminate agricultural soil, groundwater,

or waterways and potentially taint the crop itself. Right panel, promotion of the growth bioremediating microbes by amending the soil (biostimulation) and/or

making holes in the soil to promote the release of detoxified by products (bioventing) or by introduction of bioremediation microbes (bioaugmentation) can result

in safer agriculture and greater food security.

or hazardous waste runoff and exposure to benzene can lead to
anemia or damage to bone marrow. Mycobacterium vaccae is one
bacterium that can catabolize benzene and similar compounds such
as acetone, trichloroethylene, ethylbenzene, and other dangerous
chemicals [209]. Oil spills release petroleum hydrocarbons into
the area surrounding the spillage and can also contaminates
agriculture. Studies have found that there are a number of bacteria
such as Achromobacter, Acinetobacter, Kocuria, Mycobacterium,
Pseudomonas, Staphylococcus, Streptobacillus, and Streptococcus
that degrade petroleum hydrocarbons and could be employed in an
agricultural environment [210]. Petroleum by-products that enter the
soil can destroy farmlands and ruin soil fertility. Petrol or gasoline,
kerosene, and engine oil can be degraded by enteric bacteria
Escherichia coli, Proteus, Klebsiella, and Pseudomonas sp. in soil
[211-213]. Thus, microbes are promising tools for bioremediation
of toxic pollutants threatening agriculture. Incidentally, many of the
same microbes that are used for bioremediation such as Pseudomonas
and Bacillus sp. can also act as plant growth-promoting rhizobacteria
(PGPR) and contribute to plant growth promotion and disease
resistance, thus potentially boosting agricultural productivity [208].

7. CONCLUSION

There is a growing public concern for removal of the toxic pollutants
introduced into the environment by diverse human activities.
Bioremediation through biological systems is a novel technology
and receiving immense credibility in the field of the pollution
management. Bioremediation is a viable and economical approach
for waste disposal as compared to various physiochemical methods.
The continuous search for novel bioresources is still required for
successful implementation of this technology and safeguard nature and
environment. Studying the effect of microbes singly or in combination
ondiverse range of the pollutants is the need of the hour. The application

of genetically engineered microbes with potential to degrade a wider
range of pollutants could be a step forward. The enzymes involved in
the process of bioremediation could be over expressed, purified, and
utilized. The understanding of the mechanisms of microbial mediated
bioremediation could be studied. Awareness and education among the
people about the role of the microbial communities in environmental
cleaning is either important. Field trials for demonstrating the
efficiency of the bioremediation technology will prove important.
Further, metagenomics could be a useful approach to study the
microbial communities within polluted sites and genes could be
identified to improve the degradation abilities of the microbial strains.
Thus, there is a great potential for the development of the process for
bioremediation using the microbes.
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