Journal of Applied Biology and Biotechnology Vol. 3 (06), pp. 001-008, Nov-Dec, 2015 Available online at http://www.jabonline.in

DOI: 10.7324/JABB.2015.3601

Identification of diazotrophic nostocalean cyanobacteria of north eastern region of India and evaluation for nitrogenase activity and extracellular ammonium excretion

Gunapati Oinam, Wangkhem Indira, O. Avijeet Singh, Th. Indrama, K. Ojit Singh, Laxmipriya Koijam, Chungkham Silvia, A. Subhalaxmi Sharma, Romi Khangembam, Minerva Shamjetshabam, A. Thadoi, K. Sarabati, Th. Bidyababy, O.N. Tiwari*

Freshwater Cyanobacterial and Microalgal Repository, Microbial Resources Division, Institute of Bioresources and Sustainable Development (A National Institute of Department of Biotechnology, Govt. of India), Takyelpat, Imphal-795001, Manipur, India.

ARTICLE INFO

Article history: Received on: 07/07/2015 Revised on: 25/07/2015 Accepted on: 22/08/2015 Available online: 19/12/2015

Key words:

Diazotrophs, cyanobacteria, nitrogenase activity, extracellular ammonium, repository, biofertilizer.

ABSTRACT

In this study, morphological and microscopic observations were performed along with growth measurements, evaluation of extracellular ammonium and nitrogenase activity. A total of 62 diazotrophic nostocalean cyanobacteria belonging to 12 genera viz- Scytonema (2), Anabaena (22), Nostoc (17), Cylindrospermum (2), Anabaenopsis (1), Dichothrix (1), Tolypothrix (2), Calothrix (6), Aulosira (4), Microchaete (3), Wollea (1) and Rivularia (1) which were originally isolated from different niches of north east India were procured from National fresh water cyanobacterial and microalgal repository of DBT-IBSD, Imphal, Manipur, India. Among the different nostocalean cyanobacteria encountered from the various habitats, Anabaena sp. BTA650, an isolate from lithophytes under running water, Moreh, Chandel, Manipur exhibited highest nitrogenase activity of 111.08 ± 13.26 nmole C_2H_4 μg^{-1} Chl-a h^{-1} can be a potential candidate for biofertilizer formulation particularly for terraced hill rice culture condition.

1. INTRODUCTION

The North East India is a frontier region with picturesque hills and green meadows which shelters thousand of species of flora and fauna. It is connected to the rest of India by a narrow 20 km wide corridor of land. The lushness of its landscape, geographical and ecological diversity makes the North East India quite different from other parts of the subcontinent. Cyanobacteria are impressive ecosystem engineers since the beginning of the evolutionary history of planet [1]; [2]. They are often referred to as 'miniature factories' of the biological world and represent an alternative source of a variety of bioactive compounds, lipids/fatty acids, proteins, enzymes, pigments and compounds of pharmaceutical and nutraceutical value [3]; [4]. According to [5]; [6], the order Nostocales includes filamentous cyanobacteria that are capable of cell differentiation in heterocysts, akinetes or reproductive trichomes (hormogonia).

The role of nitrogen fixing cyanobacteria in enhancing soil fertility has been long known [7]; [8]. With increasing awareness of their varied potential applications, studies on cyanobacterial diversity have been reported from around the world in recent times [9]; [10]; [11]. Few reports on studies of cyanobacteria from the north eastern region of India are [12]; [13]; [14]; [15]; [16].

Diazotrophic cyanobacterial strains originally isolated from different niches of north eastern region of India were investigated morphologically and biochemically characterized for the biochemical components such as extracellular ammonium excretion, nitrogenase activity and production of chlorophyll-a.

2. MATERIALS AND METHODS

2.1 Preparation of the culture medium

BG-11(-N) non nitrogenous culture medium [17] was used for culturing of nostocalean cyanobacteria. Stock solutions of all the ingredients were prepared and stored in screw capped amber colour bottles. A volume of each ingredient was taken accordingly for one litre of the medium.

^{*} Corresponding Author E-mail: ontiwari1968@gmail.com

The pH of the culture medium was maintained through the experiment between 7.0-7.5. For adjusting the pH, N/10 solutions of sodium hydroxide and hydrochloric acid were used and calibrated in pH meter (ThermoFisher).

2.2 Identification of diazotrophic nostocalean cyanobacteria

Microscopic observations and photomicrography of the pure cultures were made with the aid of trinocular research microscopes: Nikon Eclipse 80*i* (Nikon) and Carl Zeiss Axio Scope A1 coupled with Carl Zeiss Imaging Systs 32 Software Vision AxioVision 4.7.2 (Carl Zeiss) having fluorescence attachment. Identification of cultures was carried out with the help of keys as described by [18]; [19].

2.3 Partial biochemical characterization of diazotrophic nostocalean cyanobacteria

A total of 62 diazotrophic cyanobacterial strains were procured from the Freshwater cyanobacterial and microalgal repository of IBSD, Imphal, Manipur, India (A National facility created by Department of Biotechnology, Govt. of India). The strains were selected based on their fast growth rate for biochemical screening.

Extracellular ammonium excretion, nitrogenase activity and chlorophyll-a were estimated on exponential phase of growth cycle.

2.4 Preparation of inoculum

A loopful of nostocalean cyanobacterial strain was inoculated in 150 ml BG-11(-N) medium and incubated for 10 days under a light/dark cycle of 14/10 h at $28\pm2^{\circ}$ C and 54-67 μ mol m⁻² s⁻¹ light intensity. On 10^{th} day of incubation, nostocalean cyanobacterial strain was homogenized using sterile glass bead in shaker incubator. Then, 15 ml of homogenized biomass was again inoculated in a flask containing 150 ml of BG-11 (-N) broth medium for the biochemical estimations.

2.5 Estimation of extracellular ammonium excretion

Estimation of extracellular ammonium excretion was performed as per the method described by [20] and the optical density (O.D.) of the solution was read at 640 nm in UV-spectrophotometer (UV-1800 Shimadzu).

2.6 Determination of nitrogenase activity

Nitrogenase activity determined by acetylene reduction activity (ARA) was performed as per the method of [21]. 5 ml each of the homogenized cyanobacterial samples were dispensed in 20 ml capacity vials. 10% of gas phase was taken out and same quantity was replaced by injection of acetylene gas into the airtight sample vials. The samples were incubated at $28\pm2^{\circ}$ C under 54 µmol m⁻² s⁻¹ light intensity for 90 mins. The activity was analysed in GC-FID (Chemito Ceres 800 plus gas chromatograph, ThermoScientific) with Porapak-T packed column by injection of 1 ml of the ethylene gas formed with gas tight syringe taken from the sample vials after arresting the metabolic activity of the

samples by dispensing 0.5 ml of 10% TCA on completion of 90 mins incubation. Calibration was done by using 99.9% ethylene gas. Analysis condition for the GC-FID were injector temperature set at 150°C, oven temperature set at 50°C for 15 mins and detector temperature set at 200°C using nitrogen as carrier gas. The acetylene reduction activity was calculated using Chemito Chrome Card version 2.6 software.

2.7 Estimation of chlorophyll-a

Chlorophyll-a was estimated as per the method detailed by [22]. The optical density (O.D.) of the supernatant was read at 665 nm in UV-spectrophotometer (UV-1800 Shimadzu).

2.8 Statistical analysis

Statistical analysis of the data was conducted by using Microsoft office Excel 2007 for standard deviation.

3. RESULTS

All the morphological characteristics viz. filament/trichome and branching pattern, appearance of sheath, cells shape, heterocysts, akinetes shapes etc. of the nostocalean cyanobacteria were studied (Table-1). Selected photomicrographs of different nostocalean genera for morphological studies are shown (Fig-1).

Thallus behaviours of selected strains in BG-11 broth and agar plate medium are also shown (Figs 2 & 3). Nitrogenase activity and extracellular ammonium excretion exhibited in the logarithmic/exponential stage are presented in Table-2.

Anabaena sp. BTA650 showed the highest nitrogenase activity (111.08±13.26 nmole C_2H_4 μg^{-1} Chl-a h^{-1}) followed by Calothrix sp. BTA265 (89.23±0.00 nmole C_2H_4 μg^{-1} Chl-a h^{-1}), Scytonema hofmanni BTA124 (86.32±0.74 nmole C_2H_4 μg^{-1} Chl-a h^{-1}), Rivularia sp. BTA510 (76.73±5.39 nmole C_2H_4 μg^{-1} Chl-a h^{-1}), Nostoc sp. BTA197 (28.13±0.14 nmole C_2H_4 μg^{-1} Chl-a h^{-1}) and Anabaena sp. BTA281 (21.47±0.45 nmole C_2H_4 μg^{-1} Chl-a h^{-1}).

Anabaena sp. BTA385 showed the highest $(412.05\pm0.11 \, \mu g \, ml^{-1})$ and the least by *Microchaete* sp. BTA300 $(4.30\pm0.00 \, \mu g \, ml^{-1})$ for extracellular ammonium excretion.

4. DISCUSSION

In the present study, 62 diazotrophic nostocalean strains which were originally isolated from different niches of north east India were procured from the Freshwater cyanobacterial and microalgal repository of IBSD, Imphal, Manipur for the investigation which comprises of 12 genera viz- Scytonema (2), Anabaena (22), Nostoc (17), Cylindrospermum (2), Anabaenopsis (1), Dichothrix (1), Tolypothrix (2), Calothrix (6), Aulosira (4), Microchaete (3), Wollea (1) and Rivularia (1). Among the different nostocalean cyanobacteria, Anabaena sp. BTA650 isolated from lithophytes under running water, Moreh, Chandel, Manipur exhibited highest nitrogenase activity of 111.08 ± 13.26 nmole C_2H_4 μg^{-1} Chl-a h^{-1} can be a potential candidate for

biofertilizer formulation and applications in the terraced rice field condition. Not only Anabaena sp. BTA650 alone, Calothrix sp. BTA265, Scytonema hofmanni BTA124, Rivularia sp. BTA510, Nostoc sp. BTA197 and Anabaena sp. BTA281 which were selected out of the 62 strains produced 89.23±0.00 nmole C₂H₄ µg⁻¹ ¹ Chl-a h⁻¹, 86.32±0.74 nmole C₂H₄ μg⁻¹ Chl-a h⁻¹, 76.73±5.39 nmole C₂H₄ μg⁻¹ Chl-a h⁻¹, 28.13±0.14 nmole C₂H₄ μg⁻¹ Chl-a h⁻¹ and 21.47±0.45 nmole C₂H₄ µg⁻¹ Chl-a h⁻¹ respectively which are superior or far better than earlier reports of [23]; [24]; [25]. Maximum nitrogenase activity was reported to observe at logarithmic stage along with higher frequency of heterocysts [26]. The heterocyst frequency and nitrogenase activity were comparable to many Nostoc species [27] suggesting its definite role in fixed nitrogen contribution to the rice field ecosystems on its mass turn over. In our investigation of diazotrophic cyanobacteria for nitrogenase activity during the logarithmic stage of growth, high rate of acetylene reduction activity was observed which can be assumed as due to high frequency of heterocyst at this stage of growth.

Syiem *et al.* (2011) reported that *Nostoc* sp. of Meghalaya showed enzyme assays reflecting nitrogenase activity of 6.98 nmole C₂H₄ μg⁻¹ Chl-a h⁻¹ and [24] also reported nitrogenase activity of 12±0.6 nmole C₂H₄ μg⁻¹ Chl-a h⁻¹ from *Nostoc* ANTH which clearly indicates that our studied strains would be more useful as source of biofertilizer. Present finding is also in support by another previous report of [25] in which nitrogenase activity was 50±8.00 nmole C₂H₄ μg⁻¹ Chl-a h⁻¹ as exhibited by *Anabaena cylindrica* of their study. Species of *Nostoc*, *Anabaena*, *Tolypothrix*, *Aulosira*, *Cylindrospermum*, *Scytonema*, *Westiellopsis* and several other genera are widespread in Indian rice field soils and are known to contribute significantly to their fertility [28]; [29].

For extracellular ammonium excretion, BTA385 showed the highest value (412.05 \pm 0.11 µg ml $^{-1}$) which was also at par with the previous finding of [16] during the logarithmic stage of growth for *Anabaena fuellebornii* Schmidle (ammonium excretion-96.90 \pm 0.00 µg ml $^{-1}$).

In aquatic environments that lack direct photosynthesis, cyanobacteria often form thick microbial mats, making cyanobacteria crucial in such ecosystem. These mats also contain the primary producers at the basis of the microbial food web. The role of cyanobacteria in the sustained fertility of flooded/irrigated rice field soils is well established [30]; [31]. Many photosynthetic free-living strains of cyanobacteria capable of fixing nitrogen have been isolated and used in biofertilizer consortia in south-east Asian countries and the potential impact of these organisms on agriculture through their use as biofertilizers, soil conditioners, plant growth regulators and soil health ameliorators is well recognized [32]; [33]; [34]. The role of N₂-fixing cyanobacteria in maintenance of the fertility of rice fields has been well substantiated and documented all over the world. The cyanobacteria used as biofertilizers consist of Nostoc, Anabaena, Cylindrospermum, Tolypothrix. Plectonema, Aphanothece, Aulosira and Scytonema. Nitrogen fixing cyanobacteria are being used as nitrogen biofertilizers in rice fields in countries where rice is the major staple diet [35]. Cyanobacterial N₂-fixation in the oceans contributes significantly to the global N budget [36]; [37]; [38]. In addition, cyanobacteria are key contributors to global nitrogen fixation, and many produce unique secondary metabolites [39]. The ability of diazotrophic cyanobacteria to fix atmospheric nitrogen make them unique in their ability to independently secure their carbon and nitrogen requirements. All this attributes make our studied diazotrophic Nostocalean strains to be unique for application as biofertilizers and formulations.

Table 1: Morphological characteristics of the diazotrophic nostocalean cyanobacteria.

		Taxonomical features				
SN	Name of the strains	Filament/ trichome &branching pattern	Sheath	Cell shape	Heterocyst	Akinete
1	Scytonema bohneri Schmidle BTA106	Blackish green, false branched	Colourless	Rectangular	Rectangular	-
2	Anabaena oryzae Fritsch BTA109	Straight	Not distinct	Barrel	Barrel	Ellipsoidal
3	Scytonema hofmanni Ag. ex Born. et Flah. BTA124	Irregularly bent, false branched	Thick hyaline	Cylindrical	Rectangular	-
4	Anabaenopsis raciborskii Wolosz. BTA125	Short	Not distinct	Cylindrical	Spherical	Ellipsoidal
5	Anabaena circinalis Rabenhorst ex Born. et Flah. BTA129	Circinate	Not distinct	Barrel	Subspherical	Cylindrical
6	Nostoc spongiaeforme Agardh ex Born. et Flah. BTA131	Flexuous	Diffluent	Partly cylindrical and partly barrel-shaped	Spherical	Oblong
7	Tolypothrix distorta Kutzing ex Born. et Flah. BTA187	Richly false branched	Thin	Cylindrical	Cylindrical	-
8	Nostoc sp. Ag. ex Born. et Flah. BTA197	Flexuous	Diffluent	Partly cylindrical and partly spherical	Spherical	Oblong
9	Nostoc commune Vaucher ex Born. et Flah. BTA210	Flexuous, entangled	Lamellated	Barrel	Spherical	-
10	Aulosira pseudoramosa Bharadwaja BTA213	Irregularly bent, false branched	Thick hyaline	Cylindrical	Rectangular	-

11	Nostoc spongiaeforme Agardh ex Born. et Flah. BTA227	Flexuous	Diffluent	Partly cylindrical and partly spherical	Spherical	Oblong
12	Nostoc sp. BTA229	Highly coiled	Distinct at periphery	Subspherical	Spherical	-
13	Anabaena sp. BTA230	Curved	Distinct at periphery	Barrel	Spherical	-
14	Tolypothrix byssoidea (Berk.) Kirchner BTA 257	Irregulary false branched	Thin	Barrel	Rectangular	-
15	Calothrix sp. BTA265	Single and slightly bent	Lamellated and distinct	Broader than the length and tapering	Half spherical	-
16	Anabaena doliolum Bharadwaja BTA280	Straight	Not distinct	Barrel	Barrel	Ellipsoidal
17	Anabaena sp. BTA281	Straight	Not distinct	Barrel	Barrel	Ellipsoidal
18	Anabaena bergii Ostenfeld BTA284	Coiled	Thick	Spherical	Subspherical	Elongated
19	Anabaena oryzae Fritsch. BTA293	Straight	Not distinct	Barrel	Barrel	Ellipsoidal
20	Anabaena circinalis Rabenhorst ex Born. et Flah. BTA296	Circinate	Not distinct	Barrel	Subspherical	Cylindrical
21	Microchaete sp. BTA300	Single and bent	Distinct	Cylindrical	Subspherical	-
22	Anabaena iyengarii Bharadwaja BTA302	Not distinct	Barrel	Barrel	Ellipsoidal	Ellipsoidal
23	Nostoc ellipsosporum (Desm.) Rabenh. ex Born. et Flah. BTA313	Not distinct	Cylindrical	Subspherical	Ellipsoidal	Ellipsoidal
24	Anabaena sp. BTA320	Not distinct	Cylindrical	Spherical	Ellipsoidal	Ellipsoidal
25	Nostoc ellipsosporum (Desm.) Rabenh. ex Born. et Flah. BTA332	Not distinct	Cylindrical	Subspherical	Ellipsoidal	Ellipsoidal
26	Nostoc spongiaeforme Agardh ex Born. et Flah. BTA347	Diffluent	Partly cylindrical and partly spherical	Spherical	Oblong	Oblong
27	Anabaena circinalis Rabenhorst ex Born. et Flah. BTA376	Not distinct	Barrel	Subspherical	Cylindrical	Cylindrical
28	Nostoc commune Vaucher ex Born. et Flah. BTA384	Lamellated	Barrel	Spherical	-	-
29	Anabaena sp. BTA385	Not distinct	Barrel	Subspherical	Cylindrical	Cylindrical
30	Nostoc calcicola Brebisson ex Born. et Flah. BTA394	Distinct at periphery	Barrel	Subspherical	Subspherical	Subspherical
31	Anabaena iyengarii Bharadwaja BTA397	Not distinct	Barrel	Barrel	Barrel	Barrel
32	Microchaete loktakensis Bruhl et Biswas BTA425	Broad with lamellae	Cylindrical	Spherical	-	-
33	Anabaena sp. BTA428	Distinct at periphery	Cylindrical	Oblong	Ellipsoidal	Ellipsoidal
34	Calothrix sp. BTA431	Thick gelatinous	Barrel at the base	Subspherical	-	-
35	Calothrix sp. BTA437	Distinct	Barrel at the base	Subspherical	-	-
36	Nostoc sp. BTA439	Distinct	Subspherical	Spherical	-	-
37	Audosira sp. BTA472	Lamellated	Cylindrical	Rectangular	- Ellimonidal	- 17112
38	Anabaena orientalis Dixit. BTA496	Not distinct	Quadrate	Cylindrical	Ellipsoidal	Ellipsoidal
39	Nostoc commune Vaucher ex Born. et Flah. BTA504	Lamellated	Barrel	Spherical	-	-
40	Rivularia sp. BTA510	Thin lamellated	Longer than broad at base and broader than length at apex	Conical	-	-
41	Aulosira prolifica Bharadwaja BTA514	Thin	Cylindrical	Ellipsoidal	-	-
42	Anabaena sp. BTA545	Not distinct	Cylindrical	Spherical	Oblong	Oblong
43	Calothrix clavata West, G.S. BTA550	Very thin	Discoid	Hemi-spherical	-	-
44	Anabaena sp. BTA650	Not distinct	Barrel	Barrel	Spherical	Spherical

45	Microchaete sp. BTA673	Lamellated	Broader than length and somewhat uniform throughout	Subspherical	-	-
46	Cylindrospermum sp. BTA674	Not distinct	Cylindrical	Conical	Oblong bigger than heterocyst	Oblong bigger than heterocyst
47	Nostoc sp. BTA676	Lamellated	Barrel	Spherical	-	-
48	Calothrix marchica Lemmermann BTA680	Thin	Broad at base and taper as hair	Subspherical	-	-
49	Nostoc calcicola Brebisson ex Born. et Flah. BTA698	Distinct at periphery	Barrel	Subspherical	Subspherical	Subspherical
50	Anabaena oryzae Fritsch BTA791	Not distinct	Barrel	Barrel	Ellipsoidal	Ellipsoidal
51	Wollea sp. BTA797	Distinct	Barrel	Subspherical	-	-
52	Anabaena orientalis Dixit BTA809	Not distinct	Quadrate	Cylindrical	Ellipsoidal	Ellipsoidal
53	Anabaena torulosa (Carm.) Lagerh ex Born. et Flah. BTA815	Not distinct	Barrel	Subspherical	Subcylindrical	Subcylindrical
54	Nostoc calcicola Brebisson ex Born. et Flah. BTA818	Distinct at periphery	Barrel	Subspherical	Subspherical	Subspherical
55	Nostoc hatei Dixit BTA822	Not distinct	Barrel	Spherical	Spherical	Spherical
56	Calothrix marchica Lemmermann BTA828	Thin	Broad at base and taper as hair	Subspherical	-	-
57	Aulosira sp. BTA829	Not distinct	Cylindrical	Rectangular	-	-
58	Dichothrix sp. BTA833	Distinct	Taper at end	Basal conical	=	-
59	Cylindrospermum sp. BTA866	Not distinct	Cylindrical	Conical	Oblong bigger than heterocyst	Oblong bigger than heterocyst
60	Anabaena sp. BTA893	Distinct at periphery	Barrel	Spherical	Spherical	Spherical
61	Anabaena sp. BTA914	Not distinct	Barrel	Subspherical	Subspherical	Subspherical
62	Nostoc commune Vaucher ex Born. et Flah. BTA917	Lamellated	Barrel	Spherical	-	-

BTA= Biotechnological Algae

Table 2: Partial biochemical characterization of diazotrophic nostocalean cyanobacteria.

SN	Name of the strains	Extracellular ammonium excretion (µg ml ⁻¹)	Chlorophyll-a (µg ml ⁻¹)	Nitrogenase activity (nmole C ₂ H ₄ µg ⁻¹ Chl-a h ⁻¹)
1	Scytonema bohneri BTA106	56.55±0.02	0.71±0.01	13.67±0.18
2	Anabaena oryzae BTA109	77.55±0.01	2.75±0.00	3.28±0.00
3	Scytonema hofmanni BTA124	106.05±0.01	0.19±0.10	86.32±0.74
4	Anabaenopsis raciborskii BTA125	55.95±0.00	4.89±0.06	7.30±0.12
5	Anabaena circinalis BTA129	62.40 ± 0.01	3.18±0.03	3.28±0.01
6	Nostoc spongiaeforme BTA131	85.50±0.00	8.76 ± 0.01	3.10±0.04
7	Tolypothrix distorta BTA187	105.60±0.02	0.82 ± 0.00	10.54 ± 0.05
8	Nostoc sp. BTA197	44.10±0.06	0.99 ± 0.11	28.13±0.14
9	Nostoc commune BTA210	78.92±0.01	2.12±0.01	2.17±0.09
10	Aulosira pseudoramosa BTA213	75.75±0.01	0.88 ± 0.01	1.19±0.04
11	Nostoc spongiaeforme BTA227	184.95±0.01	1.42 ± 0.00	2.85±0.12
12	Nostoc sp. BTA229	169.95±0.01	3.93 ± 0.00	1.98±0.18
13	Anabaena sp. BTA230	130.35±0.02	5.43±0.08	0.92 ± 0.15
14	Tolypothrix byssoidea BTA257	181.50±0.00	2.10±0.09	3.16±0.19
15	Calothrix sp. BTA265	46.95±0.01	0.07 ± 0.06	89.23±0.00
16	Anabaena doliolum BTA280	65.25±0.02	0.74 ± 0.02	21.34±0.02
17	Anabaena sp. BTA281	150.95±0.01	0.95 ± 0.03	21.47±0.45
18	Anabaena bergii BTA284	27.15±0.01	3.78 ± 0.04	16.03±0.03
19	Anabaena oryzae BTA293	26.10±0.01	3.16±0.07	3.92±0.01
20	Anabaena circinalis BTA296	35.55±0.00	0.70 ± 0.00	9.71±0.18
21	Microchaete sp. BTA300	4.30±0.00	3.63 ± 0.05	1.08 ± 0.05
22	Anabaena iyengarii BTA302	4.90 ± 0.00	2.41 ± 0.03	4.81±0.09
23	Nostoc ellipsosporum BTA313	9.40 ± 0.00	4.66 ± 0.02	1.61±0.03
24	Anabaena sp. BTA320	5.10±0.00	4.92±0.07	2.23±0.15
25	Nostoc ellipsosporum BTA332	75.70±0.00	ND	ND

26	Nostos spansiasforma PTA 247	12.49±0.01	2.74+0.02	3.96±0.05
26 27	Nostoc spongiaeforme BTA347 Anabaena circinalis BTA376	12.49±0.01 19.50±0.00	2.74±0.03 1.67±0.04	3.96±0.05 2.12±0.06
28	Nostoc commune BTA384	46.80±0.01	1.63±0.01	3.07±0.04
29	Anabaena sp. BTA385	412.05±0.11	1.74±0.03	5.04±0.08
30	Nostoc calcicola BTA394	147.00±0.06	4.10±0.04	6.03±0.00
31	Anabaena iyengarii BTA397	69.75±0.01	1.36±0.05	5.86±0.00
32	Microchaete loktakensis BTA425	144.90±0.06	6.84±0.08	1.42±0.04
33	Anabaena sp. BTA428	318.50±0.02	6.73±0.04	0.85±0.08
34	Calothrix sp. BTA431	242.55±0.10	3.23±0.09	7.34±0.00
35	Calothrix sp. BTA437	19.65±0.09	3.75 ± 0.05	0.27±0.05
36	Nostoc sp. BTA439	263.40±0.03	4.87 ± 0.08	1.77±0.04
37	Aulosira sp. BTA472	257.10±0.05	2.83±0.00	2.74±0.09
38	Anabaena orientalis BTA496	181.50±0.02	5.67 ± 0.03	1.43±0.18
39	Nostoc commune BTA504	207.30±0.01	1.46 ± 0.06	4.61±0.00
40	Rivularia sp. BTA510	265.20 ± 0.08	0.71 ± 0.08	76.73±5.39
41	Aulosira prolifica BTA514	325.50 ± 0.01	3.70 ± 0.05	2.49 ± 0.05
42	Anabaena sp. BTA545	144.90±0.16	3.86 ± 0.07	1.45 ± 0.04
43	Calothrix clavata BTA550	327.00 ± 0.05	6.44 ± 0.05	0.66 ± 0.00
44	Anabaena sp. BTA650	221.25±0.03	0.18 ± 0.03	111.08±13.26
45	Microchaete sp. BTA673	257.85±0.18	3.55 ± 0.07	3.41±0.02
46	Cylindrospermum sp. BTA674	373.95 ± 0.02	3.34 ± 0.05	2.80±0.18
47	Nostoc sp. BTA676	280.80±0.01	0.68 ± 0.00	15.15±0.04
48	Calothrix marchica BTA680	251.85±0.04	2.37 ± 0.07	2.16±0.07
49	Nostoc calcicola BTA698	329.55±0.17	0.63 ± 0.00	14.94±0.18
50	Anabaena oryzae BTA791	387.90 ± 0.02	1.65 ± 0.04	10.23±0.03
51	Wollea sp. BTA797	315.60±0.18	1.70 ± 0.04	1.79±0.07
52	Anabaena orientalis BTA809	319.50±0.19	1.84 ± 0.07	5.65±0.00
53	Anabaena torulosa BTA815	330.00±0.18	2.59 ± 0.04	3.03±0.01
54	Nostoc calcicola BTA818	335.85±0.09	3.25 ± 0.03	6.91±0.06
55	Nostoc hatei BTA822	320.85 ± 0.00	1.97±0.05	0.98 ± 0.18
56	Calothrix marchica BTA828	346.50±0.12	4.94 ± 0.05	6.40 ± 0.00
57	Aulosira sp. BTA829	312.15±0.07	1.30±0.15	13.07±0.00
58	Dichothrix sp. BTA833	268.35±0.13	1.25±0.16	8.00±0.01
59	Cylindrospermum sp. BTA866	300.15±0.04	2.52±0.17	10.24±0.04
60	Anabaena sp. BTA893	295.35±0.01	1.65±0.09	9.09±0.00
61	Anabaena sp. BTA914	208.35±0.09	5.76±0.16	0.37±0.18
62	Nostoc commune BTA917	55.05±0.00	4.62±0.18	1.04±0.00
	riments were replicated three times and results are pr		7.02±0.10	1.04±0.00

All experiments were replicated three times and results are presented as mean $\pm SD$

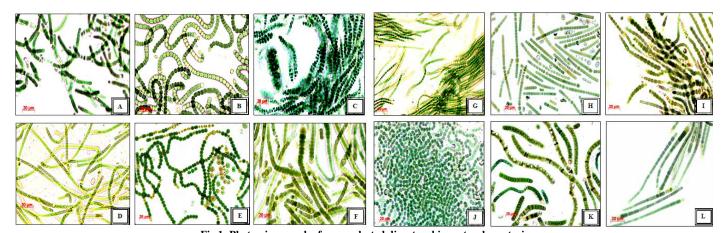


Fig 1: Photomicrograph of some selected diazotrophic nostocalean strains

A. Scytonema bohneri; B. Nostoc sp.; C. Nostoc spongiaeforme; D. Tolypothrix byssoidea; E. Anabaena sp.; F. Microchaete sp.; G. Anabaena oryzae; H. Anabaena sp.; I. Calothrix sp.; J. Aulosira pseudoramosa; K. Scytonema hofmanni; L. Rivularia sp.

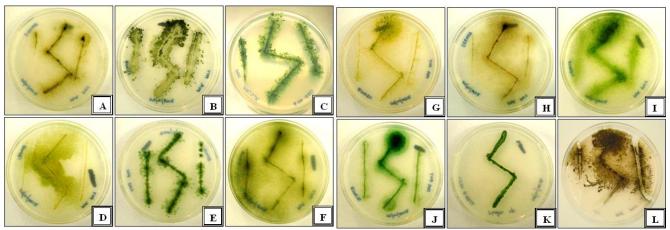


Fig. 2: Cultural behaviour of some selected diazotrophic strains on agar plate medium

A. Calothrix sp.; B. Nostoc muscorum; C. Anabaena sp.; D. Anabaena sp.; E. Scytonema hofmanni; F. Rivularia sp.; G. Anabaena doliolum; H. Dichothrix sp.; I. Anabaena bergii; J. Nostoc commune; K. Nostoc sp.; L. Nostoc carneum.

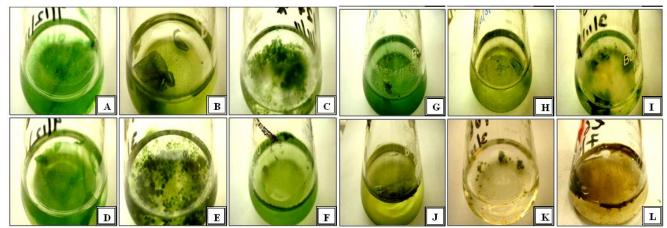


Fig. 3: Cultural behaviour of some selected diazotrophic strains in broth medium

A. Anabaena sp.; B. Anabaena bergii; C. Scytonema hofmanni; D. Nostoc commune; E. Tolypothrix distorta; F. Anabaena sp.; G. Anabaena sp.; H. Nostoc calcicola; I. Anabaena doliolum; J. Nostoc muscorum; K. Scytonema bohneri; L. Calothrix sp.

5. CONCLUSION

the various diazotrophic nostocalean Among cyanobacteria considered for the study, Anabaena sp. BTA650, an isolate of lithophytes under running water, Moreh, Chandel, Manipur exhibited highest nitrogenase activity of 111.08±13.26 nmole C₂H₄ µg⁻¹ Chl-a h⁻¹ which could be a potential candidate for biofertilizer formulation and application in the terraced hill rice field condition. In addition to this, Calothrix sp. BTA265, Scytonema hofmanni BTA124, Rivularia sp. BTA510, Nostoc sp. BTA197 and Anabaena sp. BTA281 also stand as promising candidates for biofertilizer formulation to enhance soil fertility and also minimized energy budget on nitrogen based chemical fertilizers production.

6. ACKNOWLEDGEMENTS

Authors wish to thank the Director, IBSD, Imphal, Manipur, India for providing laboratory facilities. The Department

of Science and Technology, Government of India and the Department of Biotechnology, Government of India are duly acknowledged for financial assistances.

7. REFERENCES

- Hayes PK, El Semary NA, Sanchez-Baracaldo P. The taxonomy of cyanobacteria: Molecular insights into a difficult problem. In: Brodie J, Lewis J. editors. Unravelling the algae: The past, present and future of algal systematics, CRC Press/Taylor, Francis Group: Boca Raton; 2007, p. 93-101.
- Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. Reassessing the first appearance of eukaryotes and cyanobacteria, Nature. 2008; 455: 1101-1104.
- Schaeffer DJ, Krylov VS. Anti-HIV activity of extracts and compounds from algae and cyanobacteria, Ecotoxicology and Environmental Safety. 2000; 45: 208-227.
- Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites, Biotechnology Advances. 2009; 27: 521-539.
- Castenholz RW, Waterbury JB. Oxygenic photosynthetic bacteria, group I. Cyanobacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG,

- editors. Bergey's manual of systematic bacteriology, Williams and Wilkins Co.: Baltimore; 1989, p. 1710-1728.
- Komarek J, Anagnostidis K. Modern approach to the classification system of Cyanophytes, 4: Nostocales. Archiv fur Hydrobiologie Algological Studies. 82(3/56): 247-345.
- Singh RN. Role of blue-green algae in nitrogen economy of Indian agriculture. New Delhi: Indian Council of Agricultural Research; 1961.
- Venkataraman GS. Blue-green algae: A possible remedy to nitrogen scarcity. Current Science. 1981a; 50: 253-256.
- Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U. Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiology Ecology. 2005; 54: 131-140.
- Valerio E, Chambel L, Paulino S, Faria N, Pereira P, Tenreiro R. Molecular identification, typing and traceability of cyanobacteria from freshwater reservoir. Microbiology. 2009; 155: 642-656.
- 11. Kumari N, Srivastava AK, Bhargava P, Rai LC. Molecular approaches towards assessment of cyanobacterial biodiversity. African Journal of Biotechnology. 2009; 8(18): 4284-4298.
- Tiwari, ON, Singh HT. Biodiversity of cyanobacteria in Loktak lake and rice fields of Manipur, India having acidic properties. Proceeding of the National Academy of Sciences India. 2005; 75: 209-213.
- Devi SD, Indrama T, Tiwari ON. Biodiversity analysis and reproductive/ cultural behaviour of cyanobacteria of north east region of India having acidic properties. International Journal of Plant Reproductive Biology. 2010; 2: 127-135.
- 14. Syiem MB, Nongbri BB, Pinokiyo A, Bhattacharjee A, Nongrum NA, Hynniewta L. Significance of cyanobacterial diversity in different ecological conditions of Meghalaya, India. Journal of Applied and Natural Science. 2010; 2(1): 134-139.
- Oinam G, Singh AO, Tiwari ON. An account of heterocystous Nostocalean cyanobacterial biodiversity of Manipur, India. Journal of Indian Botanical Society. 2011; 90(1 & 2): 45-59.
- 16. Singh KO, Oinam G, Tiwari ON. New record of potential cyanobacteria from India region falling Indo-Burma biodiversity hotspots (north-east region of India) and partial characterization for value additions. Philippine Journal of Science. 2012; 141(1): 57-66.
- Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews. 1971; 35: 171-205.
- Desikachary TV. Cyanophyta. New Delhi: Indian Council of Agricultural Research; 1959.
- Castenholz RW. Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW, Garrity GM, editors. The archaea and the deeply branching and phototrophic bacteria, Bergey's manual of systematic bacteriology. 2nd ed. New York: Springer-Verlag; 2001, p. 473-600.
- Solorzano L. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnology and Oceanography. 1969; 4: 799-801.
- 21. Hardy RFW, Burns RL, Holsten RD. Applications of the acetylenereduction assay for measurement of nitrogen fixation. Soil Biology and Biochemistry. 1973; 5: 47-81.
- Mckinney G. Absorption of light by chlorophyll solution. Journal of Biological Chemistry. 1941; 140: 315-322.
- Syiem MB, Hynniewta L, Pinokiyo A. Nostoc cyanobiont in the cyanolichen, Sticta weigelii of eastern Himalayan region: Isolation, physiological and biochemical characterization. Journal of Experimental Sciences. 2011; 2(9): 36-40.
- 24. Bhattacharya J, Singh AK, Rai AN. Nitrogen nutrition in the cyanobacterium *Nostoc* ANTH, a symbiotic isolate from *Anthoceros*: Uptake and assimilation of inorganic -N and amino acid. Indian Journal of Biochemistry and Biophysics. 2002; 39: 163-169.

- Bergman B, Gallon JR, Rai AN, Stal LJ. Nitrogen fixation by nonheterocystous cyanobacteria. FEMS Microbiology Review. 1997; 19: 139-185.
- Aluwalia AS, Kumar HD. Pattern of akinete differentiation in the blue-green alga *Nostoc* sp. Beitrage zur Biologie der Pflanzen. 1982b; 57: 459-467.
- 27. Turner S. Molecular systematics of oxygenic photosynthetic bacteria. Plant Systematic and Evolution. [Suppl.] 1997; 11: 13-52.
- Venkataraman GS. Blue-green algae for rice production. FAO Soil Bulletin. 1981b; 16: 33-42.
- Nayak S, Prasanna R, Dominic TK, Singh PK. Effect of BGA- Azolla biofertilizers on nitrogen fixation and chlorophyll accumulation at different depths in soil cores. Biology and Fertility of Soils. 2004; 40: 67-72.
- 30. Mandal R, Tahmida Begum ZN, Khan AUM, Hossin MZ. N₂-fixing blue-green algae in rice fields and their relationship with soil fertility. Bangladesh Journal of Botany. 1993; 22: 73-79.
- Roger PA, Santiago-Ardales S, Reddy PM, Watanabe I. The abundance of heterocystous blue-green algae in rice fields and inocula used for application in rice fields. Biology and Fertility of Soils. 1987; 5: 98-105.
- Amma PA, Aiyer RS, Subramanian N. Occurrence of blue-green algae in acid soils in Kerala. Agricultural Research Journal of Kerala. 1966; 4: 141-142.
- Bastia AK, Satapathy DP, Adhikari SP. Heterotrophic growth of several filamentous blue-green algae. Algological Studies. 1993; 70: 65-70.
- 34. Whitton BA. Diversity, ecology and taxonomy of the cyanobacteria. In: Mann NH, Carr NG, editors. Photosynthetic prokaryotes, New York: Plenum Press; 1992, p. 1-52.
- 35. Venkataraman GS. The role of blue-green algae in tropical rice cultivation. In: Stewart WDP, editor. Nitrogen fixation by free living micro-organism. United Kingdom: Cambridge University Press; 1975, p. 207-218.
- Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research Microbiology. 2003; 154, 157-164.
- 37. Diez B, Bergman B, El-Shehawy R. Marine diazotrophic cyanobacteria: out of the blue. Plant Biotechnology. 2009; 25: 221-225.
- Short SM, Zehr JP. Quantitative analysis of nifH genes and transcripts from aquatic environments. In: Leadbetter J, editor. Methods in Enzymology: Environmental Microbiology, Elsevier; 2005, p. 380-394.
- Welker M, von Dohren H. Cyanobacterial peptides-nature's own combinatorial biosynthesis. FEMS Microbiology Reviews. 2006; 30(4): 530-563.

How to cite this article:

Oinam G, Indira W, Singh OA, Indrama T, Singh KO, Koijam L, Silvia C, Sharma AS, Khangembam R, Shamjetshabam M, Thadoi A, Sarabati K, Bidyababy T and Tiwari ON. Identification of diazotrophic nostocalean cyanobacteria of north eastern region of India and evaluation for nitrogenase activity and extracellular ammonium excretion. J App Biol Biotech, 2015; 3 (06): 001-008. DOI: 10.7324/JABB.2015.3601